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Abstract
This book is a translated into English extended and significantly added
version of author’s brochures "Guidelines for teachers of mathematics to

prepare students for mathematical competitions" published at 1988 in
Odessa.

Preface

This book is a translation into English of my brochures "guidelines for teach-
ers of mathematics to prepare students for mathematical competitions" pub-
lished 1988 year in Odessa.

More precisely it is corrected and significantly added version of this brochure.
In comparison with the first original edition with solutions only to 20 problems
from 112 problems represented there this new edition significantly replenished
with new problems (around 180 problems).

And now all problems are accompanied by solutions which at different times
done by the author of this book (sometimes multivariants and with the analysis
and generalizations). Also, unlike the previous edition, all problems are grouped
into the corresponding sections of mathematics.

Part 1
Methodology Introduction

It makes no sense to repeat what has already been said about the usefulness
and expediency of mathematical olympiads of different levels.Therefore, let us
dwell on the issues that naturally arise in connection with the Olympiads, in
particular, with olympiads of high level, -issues of preparation to Mathematical
Competitions

The main question: Is it necessary such preparation?

It’s not a secret that students who are able to solve the problems offered at
these Olympiads, sufficiently gifted mathematically, have more advanced math-
ematical techniques and a number

of useful qualities, including the ability to self-organize and independent
work.That is, and so good.?
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But there is a fact of very serious preparation by level and by time, for
participation in international mathematical Olympiads. Is known significant
advantages of participants in the Olympiads, students of schools and classes, in
which mathematics is taught in a larger volume and with greater depth.

Finally, the more capable a student is, the more important and difficult is to
ensure the growing process of improving and systematizing mathematical edu-
cation, which should include not only the knowledge of concrete facts, but what
is more important, the ways of their formation (with the need to include their
proofs), intensive practical work with solving non-standard and nonaddressed
problems, that is everything that forming a culture of mathematical thinking.

(Culture of mathematical thinking:

-Discipline of thinking, algorithmic thinking, observation, ability to analy-
sis, generalizations, the ability to build mathematical models, to choose a con-
venient language description of the problem situation .... (the list can be con-
tinued)).

The existing system of teaching mathematics in no way contributes to readi-
ness of the student to solve unconventional, nonstandard problems of the Olympiad
character. If all this happens, it is not thanks to this system, but contrary to
it.

The main reason is that the goal of traditional school education is a certain
an admissible minimum of knowledge, limited by the amount of hours, the
program, its quantitative and qualitative composition and certainly the teaching
methodology based mainly on the memorization of facts and means for execution
of algorithmized instructions aimed at solving exclusively typical problems.

If within the framework of this system the student faithfully complies with
all the requirements, and limited by this, then his success isn’t sufficiently guar-
anteed. But this is not the main thing.

The main thing is that the creative attitude to mathematics will be hope-
lessly lost. And if this does not happen in some cases, it is only thanks to the
personality of the student and the personality of the teacher that have fallen in
the state of resonance.

It’s no secret that the assurances of the organizers of the Olympiads that
problems do not go beyond of school curriculum to put it mildly, distort the
real state of things.

That is, formally they do not sin against the truth, at least so, how much, say,
as the editor of the book, which write in the annotation, that for its reading
not necessary to have no preliminary information, except for the developed
mathematical thinking.

But the latter is already a result of a preparation of very long and intencive
and varied, the result of systematic training aimed at developing thinking non-
standard, but logically disciplined.

The essence of this statement will become clear after the complete list of
what is know the ordinary student (a student which is in full compliance with
the program).

Even in class programs with in-depth study of mathematics, much of this in
the following list is missing.
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So, what does not know (or know insufficiently) a ordinary school student :

1. Algebraic and analytic technic.

2. Method of mathematical induction at the level of well-developed technique
use it in different and, preferably, non-standard situations;

3. The theory of divisibility is, in a volume different from residual, vague
representations of a high-school student about knowledge, which was casually
recetved in middle school

4. The algebra of polynomials including the theory of divisibility of polyno-
maals

5. Basic classic inequalities and their applications.

6. Integer and fractional parts. Properties and applications.

7. Technique of solving systems of inequalities in integer numbers and
effective representation of integer multidimention domains;

8. Technique of summation, including summation by multidimention do-
mains.

9. Sequences -different ways of their definition (including recursive defini-
tion and generating functions) and elementary methods of solving certain classes
of recurrence relations and their applications in the theory of divisibility, sum-
mation, combinatorics and so on.

10. The Dirichlet principle.

11. Method of invariants.

12. Techniques of elementary (without derivatives) solving extremal prob-
lems, especially with many variables.

18. Solving equations in two or more unknowns in integers and especially
m non-negative integers.

14. Sequence analysis (boundedness, monotonicity, limit theory, including
theoretical and practical basis, and basic limits). .

To this list it is necessary to add the lack of the ability to solve non-standard,
nonaddressed problems. An unconventional, unexpected problem should be
classified, understood, reformulated,

simplified, immersed in a more general problem, or treated by special cases
and identified the main theoretical tools needed to solve it. The usual work of a
student is simple. Here is a chapter, here is a problem to this chapter. Search,
recognition work is minimal and the emphasis is exclusively on the robustness of
standard algorithms, that is, the minimum problematic level which is the only
truly developing thinking factor.

And if thinking does not develop, then it degrades and even ideal diligence
can not be a compensation for this loss, accompanying such approach to math
education. Thus, a consequtive change of topics, not backed by "no-address"
problems does not allow you to achieve the desired effect.

That is, it is necessary that in each topic there are problems that can be
solved by using some a previously unknown combination of formally known
theoretical propositions from the preceding material.

A participant in the Olympiad needs some psychological qualities that also
require training and preparation, either special or spontaneous, accompanying
the solution of non-standard problemss in conditions of limited time.
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This ability to quickly and deeply focus on a specific problem, quickly relax
and switch to another task from any previous emotional state depending on luck
or failure.

Required sufficiently rich associative thinking and trained memory, allowing
to carry out the associative search for necessary means to solve the problem.

And most importantly, to learn to "misunderstand", that is, to face a prob-
lem in which there is nothing to grab on, there is no (at first impression) ready-
made approaches to its solution, calmly analyze it to look for something familiar
and similar to what you know, consider special cases (reduction), generalize(
induction), investigate the problem in limiting cases, introduce additional con-
ditions that simplify the situation, accumulate experimental material.

For a mathematician, a difficult problems is to take height, to overcome
not only intellectual barrier but also complexes, fears. Thus, are important the
methodical settings of the type: "How to solve the problem?"; psychological
attitudes: reaction to the shock of "misunderstanding," the creation of com-
fortable zones, the ability to relax, adjust to the problems, focus, quickly and
deeply dive into it, that is requirements for the student’s psychological status.

But the psychological and methodological qualities can only be developed
by a large amount of work to solve non-standard problems, with the subsequent
analysis of methodological, psychological and

especially technical and ideological aspects, with the formation of generaliz-
ing settings, which is also the goal of special training for students.

It often happens that children who are capable of creative work are not able
to work in a sporting situation, which of course affects their "sports" results,
but does not detract from their ability to mathematical creativity, which is by
essence isn’t a sports match.

However, as in other areas of human activity, people often bring sports
excitement in mathematic, turning it into a competition of minds. By itself it
is not a negative quality, but rather useful, developing

motive, under condition that the mathematics by itself is not reducible to
one more kind of sports competition.

It should not be forgotten that the Math Olympiad is not an aim in itself, but
a training ground on which many qualities necessary for the future researcher
are being perfected, such as perseverance,

will, technique, knowledge, skills, reaction to practical situations, thinking.

The list of problems given in this book does not in any way pretend to be
complete, but it is quite representative for such sections of school mathematics
as arithmetic, algebra and analysis.

The absence of geometric problems proper is caused by the desire to restore
the balance in the evidence base to school mathematics.

Traditionally, the concept of proof, the methods of proof, the level of rigor,
the axiomatic approach - what we call abstract thinking is basically formed in
the course of geometry, that is, a region

closer to sensory perception than algebra.

Arithmetic turns out to abandoned wasteland, somewhere in the backyard
of mathematical construction, and algebra is reduced to a set of formulas and
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rules that need to be remembered and applied.

At the same time, an insignificant part of students informally accepts and
understands the level of rigor and evidence in geometry and is able to transfer
the acquired thinking technique independently

to other mathematical areas.

For the others, the geometry - not motivated and it is unclear for what sins
the punishment by jesuitically sophisticated logic and for some reason mostly
"from the opposite", resulting in a

false and unimaginable premise to the almost illusive stunt of drawing a
black rabbit from a black hat, "what was required to prove ".

The loss in the geometry of its naturalness, the departure from the exposition
of it in the school at the level of Euclid, Kiselev, Kokseter did not bring desirable
effect in the plane of it’s modernization, rigor or deep understanding, since
geometry is not the object on which the axiomatic method, usually accompanied
with extreme formalism don’t bring true efficiency.

This is particularly true for the introductory courses specific to the school.
And although historically, it was in geometry, the axiomatic method showed us
its methodological power, geometry

is not at all the only reason for its primary demonstration.

Speaking of this, I in no way deny the use of the elements of the axiomatic
method and rigorous proofs in the exposition of geometry, moreover, I consider
their use necessary and beneficial.

I am only expressing the doubt, confirmed by my teaching practice, in the
appropriateness and effectiveness of primacy in the use of the axiomatic method
and proofs in geometry.

It is not with geometry that one has to start the introduction of mathemat-
ical formalism, which comes into conflict with the visibility which inherent to
geometry.

Due to the structural wealth of geometry, its axiomatics are voluminous
and combinatorially saturated and, although grown by abstraction from sensory
images, nevertheless do not live well with them.

Rather, they are poorly compatible with the level of rigor and formalism of
thinking, which is the inevitable companion of the axiomatic method.

And the roots of this in the psychology of perception and thinking.

It is known that it is most difficult to prove or disprove the apparently
obvious, visual:

"The sun revolves around the Earth," "The Earth is flat," "A straight line
that crosses one side of the triangle and does not pass through the vertices of
a triangle will cross exactly one of its sides."

Hence the Greeks instead of proof drawing and saying "look!".

History begins with geometry, the school copies history, although it is known
that when the path is passed, it is not the shortest and most effective.

At the same time, the Peano axioms for natural numbers, the theorems in the
divisibility theory, the axioms of various algebraic structures that are essentially
a subset of geometric axiomatics
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are much simpler (combinatorial complexity), less reducible to sensory im-
ages, and therefore their use is methodologically more justified.

[Advanced algebraic base assuming free possession of the symbolic transformative tech-
nique, systematic proof of all the theoretical facts that make up the qualitative and the
computational basis of what is commonly called school algebra (see items 1,2,3, ... of the
list of the above) - this should, in my opinion, precede the rest of the school mathematics,
including geometry.]

But in school, these topics are taboo. Suffers from such a one-sidedness
all math subjects algebra, and arithmetic, and geometry, that is, all of school
mathematics and not only.

Mathematics is one, its means are universal - this is the ideological basis
on which mathematics education should be carried out. And methodological
one-sidedness is unacceptable.

And, finally, the implantation of mathematical methodology into conscious-
ness should should be implemented by the way which is most motivated psy-
chologically.

The lack of habit of abstract reasoning at the level of the proofs of theorems
in arithmetic and algebra, in contrast to the intensive theoretical foundation in
geometry, subsequently creates a

considerable obstacle in the ability to find arithmetic (algebraic) means,
to dispose of them with the same rigor and thoroughness as is customary in
geometry.

Quite often the idea of the non-standard and complexity of the arithmetic
problem is related precisely to the absence of a completely elementary and es-
sential sequential theoretical basis related to arithmetic of natural, integer and
numbers in general, which forms, in addition to everything, is the foundation
of mathematical analysis. That is, the non-standard nature of the problem in
such cases is equivalent to non-informedness.

In these cases, the situation becomes ambiguous, because, on the one hand,
the lack of specific knowledge-tools requires its spontaneous invention in the con-
ditions of the Olympiad, and it is more complicated than choosing the necessary
combination of already known tools and technology for its purposeful use, and
on the other hand for an informed student solution of the such problem basically
becomes a matter of technique.

Thus, the olympiad (sports) value of such problems is doubtful. This does
not, however, diminish their possible educational value. But let us leave that
on the conscience of the composers of the Olympiad problems and consider the
positive aspect of this situation, which consists in motivation of the student in
additional technical and theoretical equipment, which ultimately brings him to a
higher level, and allows expanding the problem area, then there is more complex
problems, the solution of which already depends entirely from recognizing ability
of the participant of the Olympiad and his ingenuity in the use of already known
means. In this way, both the stimulation of mathematical education and the
escalation of thinking take place.

In the author’s opinion, the problems presented in the following sections will
convincingly argued that was saying in the introduction.
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Remark.

1.Abbreviation n-Met. Rec.(Methodical recommendations) means
that the problem originally has number n in the author’s brochures "Guidelines
for teachers of mathematics to prepare students for mathematical competitions"
published at 1988 in Odessa.

2.Abbreviation MR means Mathematical Reflections — AwesomeMath,;

3. Abbreviation ZK means Zadachnik Kvanta;

4. Abbreviation SSMJ means School Science and Mathematics As-
sociation Journal

5. Also, if problem marked by sign % it means that the problem was pro-
posed by author of this book.

Part IT
Problems

1 Divisibility.

Problem 1.1 (6-Met.Rec.)
Find all n such that 144... 4 is the perfect square.
—

n times

Problem 1.2 (8-Met.Rec.)
Prove that number 3851980 + 181980 jsn’t a perfect square.

Problem 1.3 (9-Met.Rec.)

Let f (x) = 2®—2+1. Prove that for any natural a numbers a, f (a), f(f (a)), ...

pairwise coprime.

Problem 1.4(23-Met.Rec.)
Find the largest natural = such that 427 + 41000 4 47 is a perfect square.

Problem 1.5(24-Met.Rec.)

Prove that 5™ — 4™ for any natural n > 2 isn’t perfect square.
Or,

Prove that set {6 — 4™ | n > 2} is free from squares.

Problem 1.6(25-Met.Rec.)
a) Prove that set {2" + 4™ | n € N} is free from squares;
b) Find all non negative integer n and m for which 2" 4+4™ is perfect square.

Problem 1.7(26-Met.Rec.)
Find all n € N such that 3™ + 55 is a perfect square.

(©1985-2018 Arkady Alt 7
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Problem 1.8 (27-Met. Rec.)

Prove that the following number is composite for any natural n:
a) a, = 32 2;

b) by, := 23" 43

) cni=23"" 45

Problem 1.9(28-Met. Rec.)
Prove that 5™ — 1 isn’t divisible by 4 — 1 for any n € N.

Problem 1.10(297-Met. Rec.)
Let a, b, ¢, d be natural numbers such that ab = cd. Prove that for any
natural n number a®” 4+ b>" + ¢ + d*" is composite.

Problem 1-11(30-Met. Rec.)
Prove that 53" — 22" is divisible by 11 for any natural m,n.
Problem 1.12(32-Met. Rec.)

Is there a number whose square is equal to the sum of the squares of
1000 consecutive integers?

Problem 1.13(33-Met. Rec.)
Let n be natural number such that 2n + 1 and 3n + 1 are perfect squares.
Prove that n is divisible by 40.

Problem 1.14(34-Met. Rec.)
Is it possible that sum of digits of a natural number which is a perfect
square be equal 19857

Problem 1.15
Find all non negative integer n and m for which 2" + 4™ is perfect square.

Problem1.16(37-Met. Rec.)
Prove that:
a) n! isn’t divisible by 2.
b) ord, ((p —1)n))) <n+ord, (n!).
&) () = (((n— 1))1)"

(pn)!

o ora, (2

e) (n))! > ((n—1HH™.

Problem 1.17(38-Met. Rec.)
Prove that:
!

a) (n)!: (n)" V'

(©1985-2018 Arkady Alt 8
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b) (D! ((n— 1)),
c) () inn"
d) (n?)!: (n)";
e) (nmth)!: (s

£) (n-m)': (n)™;

8) n!(n+1)!
h) (n+1)(n+2)...(n+k) : k! for any n,k € N .

is integer.

Problem 1.18(41-Met. Rec.)
Find all natural number n such that remainder from division
Spn =142+ ..4n by 5 equal 1.

Problem 1.19(123-Met. Rec.)

Show that the next integer above (\/§ + 1)2n is divisible by 27! i.e.
[(\/3 + 1)2n—‘ : 271 Show that there are infinitely many n € N for which
[(V3+1)""] not divisible by 27+2.

2 Diophantine equation.

Problem 2.1(22-Met. Rec.)

3z — /922 4 160z 4 800 . .
16 1S integer.

Find all integer = such that

Problem 2.2(35-Met. Rec.)
Prove that equation x? — 22y = 1978 have no sulutions in integers.

Problem 2.3(47-Met. Rec.)
Prove that if numbers n, m € N satisfy to equality 2m? + m = 3n? +n
then numbers m — n,2m + 2n 4+ 1,3m + 3n + 1 are perfect squares.

Problem 2.4(42-Met. Rec.)
Find all integer solutions of equation x3 — 2y® — 423 = 0 (excluding
trivial solution x =y = z = 0).

Problem 2.5(43-Met. Rec.)
How many natural solutions have equation 223 4+ ¢ = 27?

Problem 2.6(44-Met. Rec.)
Prove that equation 22 + 2 + 23 + 3 = u* — v* has infinitely many
solutions in natural x,y, 2, t, u, v.
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Problem 2.7(45-Met. Rec.)

How many natural solutions has equation z* 4 5 4 212 = ¢4?

Problem 2.8(46-Met. Rec.)

Prove that for any given integer ¢ the following equations have no integer
solutions:

a) 23 +y3 =9t £ 4;

b) 23 +y3 =9t + 3;

c) 23 +yP 423 =9t + 4

d) 23 + 117y = 5.

Problem 2.9(50-Met. Rec.)

Let a be integer number such that 3a = 22 + 2y? for some integer
numbers x, y.

Prove that number a can be represented in the same form , that is there is
integers u, v that a = u? + 2v2.

Problem 2.10(40-Met. Rec.)

Find conditions for irreducible fractions % and g that provide silvability

. y G, . .
of equation y = z* + 77 + — in integer z,y.(that parabola contain at

least one (then infinitely many) points M (x,y) with integer z,y.

% Problem 2.11(3932, CRUX)

Prove that for any natural numbers x, y satisfying equation
22— ey +y?2 —4x =0

holds ged? (z,y) = 4.

Problem 2.12(54-Met. Rec.)

The store has a sealant in boxes of 161b, 171b, 211b. How some organization
can get without opening boxes 185 1b of sealant and so, that the number
of boxes will be smallest?

Problem 2.13(55-Met. Rec.)
Find the number of non-negative integer solutions of equation
5z + 2y + z = 10n in term of given natural n.

3 Integer and fractional parts.
Problem 3.1 (56-Met. Rec.)

Find [(V2+ V1)°].

Problem 3.2 (57-Met. Rec.)

Simplify

- rka t
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a) [(Vi+vaFl+vnt2)’;
b) [Vrn+vn+1+vn+2].

Problem 3.3 (59-Met. Rec.)

1
Solve equation {z} + {x} =1l,zeR.
Problem 3.4 (60-Met. Rec.)
Prove equality Y [log,n] = > [V/n].
a=2 b=2

*Problem 3.5 (3095, CRUX)
Let a,b, c,p, and ¢ be natural numbers. Using |z] to denote the integer
part of x, prove that

s )

Problem 3.6 (10-Met. Rec.)
Prove that:

a) For any n € N holds inequality {n\/i} >

1
271\/57

1
b) For any ¢ > 0 there is n € N such that {nﬂ} < te

2n\/§.

Problem 3.7 (11-Met. Rec.)
Let n € N isn’t forth degree of natural number. Then

. 1
Wn}> =

*Problem 3.8 (J289,MR)
For any real a € [0, 1) prove the following identity

1 1
1 — 1=|——1].
(=Dl -
Problem 3.9 (118-Met. Rec.)
For arbitrary natural m > 2 prove that {(m +vm?2 — l)nJ is odd

number for any natural n.

% Poblem 3.10 (W16, J.Wildt IMO 2017)

For given natural n > 1 find number of elements in image of function
2

- {H (1,2, ..,n} — NU{0}.

4 Equations, systems of equations.

*Problem 4.1(90-Met. Rec.)(Generalization of M703* Kvant)
Solve the system of equations.
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{ (q+r)(@+1/z)=(r+p)(y+1/y)=(p+q) (2 +1/2)
zy+yz+zex=1
where p, ¢, r are positive real numbers.
Problem 4.2 (91-Met. Rec.)
Solve the system of equations
2z + 2y =y
2% + 9%z =2
222+ 22x =2
Problem 4.3 (92-Met. Rec.)
Solve the system of equations:
r—y=sinx
Yy —z=-siny
z—T =sinz

Problem 4.4 (93-Met. Rec.)
Solve the system of equations:

T+ To+ ... +x, =1
1
x%+x§+...+xi = -
Problem 4.5 (94-Met. Rec.)
Solve the system of equations:
2,24 L2 1
a) Tt +y“+z 1 a>
r+y+az=1+a 2

r+y+z=a
b) ¢ 1.1 1_1 .a#o

T Yy z a

Problem 4.6 (95-Met. Rec.)
Given that
r+y+z=2
zy+yz+zx=1
Prove that z,y, 2 € [0,4/3].

Problem 4.7(96-Met. Rec.)

Solve the system of equations:
2 (cosx — cosy) = cos2x cosy
2 (cosy — cos z) = cos 2y cos z
2 (cosz — cosx) = cos2z cosx

5 Functional equations and inequalities

Problem 5.1 (97-Met. Rec.)
Find all functions defined on R such that:
a) f(2?) = (f(2)’ 2 1/4and 21 # 22 = f(21) # f (22);
b) f(z)<z foranyz € R and f(z+vy) < f(z)+ f(y) for any =,y € R.

Problem 5.2 (99-(Met. Rec.)

(©1985-2018 Arkady Alt 12
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Function f (x) defined on [0,1] and satisfies to equation

flz+f(2) = f(2)
for any z € [0,1] .Prove that f (z) =0 for all z € [0,1].

Problem 5.3 (100-Met. Rec.)
Find all continuous on R functions f suth that

f@) fy)—zy=f(2)+f(y) -1
holds for any =,y € R.

Problem 5.4 (101-Met. Rec.)
Let n € N\ {1} . Find all defined on R functions f such that
nf (nx) = f () + nz for any x € R and f is continuous in z = 0.

Problem 5.5 (14-Met. Rec.)
Prove that there is no function f : R — R continuous on R such that
fle+)(f(x)+1)+1=0.

Problem 5.6 (15-Met. Rec.)
For any given n € N find all functions f : N — R such that
f(m+k)=f(mk—n),mkeNand mk > n.

*Problem 5.7 (U182,MR)

1
Find all continuous on [0, 1] functions f such that f (z) =¢, if z € |0, 3

1
and f(x)=f(Q2x—1)ifz e (2, 1} ,where c¢ is given constant.

6 Recurrences.

Problem 6.1 (4-Met. Rec.)
Let p is some natural number. Prove, that exist infinitely many pairs (z,y) of

2
7 +p

2
+ .
natural numbers such, that and L2 are integer numbers.
x

Problem 6.2 (5-Met. Rec.)

Let sequence is defined recursively as follow:

Apt10nio + 5
an+3:%,nGNandalzagzl,%:Z

Qn
Prove that all terms of this sequence are integer numbers.
Problem 6.3 (16-Met. Rec.Problem 5, Czechoslovakia, MO 1986 )
Sequence of integer numbers aq, as, ..., Gy, ... defined as follows:

a1 =1,apnyo =2ap4+1 —ap, +2,n €N
Prove that for any n € N there is such m € N that a,a,+1 = .

- rka t
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Problem 6.4 (17-Met. Rec.)
Prove that if sequence (an)n21 satisfy to recurrence
Un42 = azH_l —Qn,N € N
with initial conditions a; = 39, aa = 45 then infinitely many terms
of this sequence is divisible by 1986.

Problem 6.5*% (31-Met. Rec.)
Given a quad of integer numbers (a, b, ¢, d) such that at least two of
them are different.
Starting from this quad we create new quad
(a1,b1,¢1,d1) = (a —b,b—c,c—d,d—a).
By the same way from quad (a1,b1,c1,d;) we obtain quad (asg, ba, c2,d2)
and so on...
Prove that at least one from the numbers aigg, b100, 100, d100 bigger than
109.

Problem 6.6* (19-Met. Rec)
Let a > 1 is natural number. Sequence a1, as, ..., ay,...is defined recursively

ay =a
ap=a"— >

tln, t<n

Prove that a, : n for any n € N ( a, divisible by n for any n € N).

Problem 6.7* (G.Demirov, Matematika 1989,No.7 ,p.34, Bolgaria)
Let sequence (a,) defined by the recurrence

Unt2 = Ant10n — 2 (@py1 + an) — an—1 + 8,n € N with initial conditions
ag =4,a1 = ag = (a2 — 2)2, where a > 2.
Prove that for any n € N expression 2 + /a,, is a square of some
polinomial of a.

Problem 6.8
Find general term of the sequence:

1 8
a) an+1:2—7(8+3an+8\/W),a1:§;
1
b) ani1 = — (1+4a, + 1+ 24a,),a1 = 1.

16

Problem 6.9%* ’

Let sequence (a,) be defined by equation (\/§ — 1)” =Va, +1—/a,.
a) Find recursive definition for (a,) and prove that a,, is integer for

all natural n;

b) Let t,, := \/2ay (a, + 1). Find recursive definition for (¢,) and prove
that ¢, is integer for all natural n.

Problem 6.10.(Proposed by S. Harlampiev, Matematika 1989,
No.2, p,43, Bolgaria)

- rka t
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Let sequence defined by recurrence

20,41 — 3a, n+17a, — 16
Ont1 — SGnp1tn 1000 — 10 g0y

a. =
"2 B anit — daniian + 18a, — 17
with initial conditions ag = a1 = 2.
1
Prove that a,, for any n € NU {0} can be represented in the form 1+ —
m

where m € N.

Problem 6.11*. (Proposed by Bulgaria for 1988 IMO)

Let ap =0,a1 = 1,an41 = 2an+a,—1,n € N. Prove that a,, (ok e 1ok,

7 Behavior(analysis) of sequences

Problem 7.1 (104-Met.Rec)
For natural n > 3 let ay, as, ..., a, be real numbers such that a; = a,, = 0 and
ag—1+ ag+1 < 2ax,k=2,...,n — 1. Prove that ay > 0,1 =1,2,....n.

Problem.7.2 (105-Met. Rec.)
1
a) Let a; =1 and a1 = a, + —,n € N. Prove that 14 < ajgo < 18.

Find lower and upper boun?is for a,.(Problem 7 from all Soviet
Union
Math Olympiad,1968)

b) Let a3 =1 and ay11 = a, + n € N.

POR)
i.Prove that (a,,) unbounded. "
ii. agooo > 30;

iii. % find good (assimptotic) bounds for (ay,).

Problem 7.3 (106-Met. Rec.)
Find all values of a,such that sequence ag, a1, ..., an, ... defined as follows
ap = a,ap4+1 = 2" — 3a,,n € NU{0} is increasing sequence.

Problem 7.4 (107-Met. Rec.)

Known that sequence aq, as, ..., ayn, ... satisfy to inequality
b

ant1 < {14+ —=]a,—1,n €N, where b € [0,1).
n

Prove that there is ng such that a,, < 0.

Problem 7.5% (109-Met.Rec.) (Team Selection Test, Singapur).
2

1 .
5 and ag4+1 = ax + a—k, k € N. Prove that
n

1
1-—<a, <1
n

Let n €N, a9 =
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Problem 7.6 (110-Met. Rec.)
Find 1im {(2+v3)"}.

Problem 7.7 (111 -Met. Rec.)

a) Let sequence (x,,) satisfy to recurrence 11 = ¢, (1 — x,,), n € NU{0} and
xo € (0,1). Prove that lim nz, = 1;

b) Let sequence (z,,) satisfy to recurrence

xn+1=x%—xn+1andx1=a>1.

x> 1

i. Find > —;
n=1Tn

.. . Tn+1

ii. Find |—2tL |,
T1X2...Lp

c) Let sequence (z,,) satisfy to recurrence z,, = 0.522_; —1,n € N
1
with initial condition zg = 3

Find lim z,.

n—oo

Problem 7.8 (112-Met. Rec.)
Find lim z, where xg = 1/3, 2,41 = 0.522 —1,n € NU {0} .

X 1
Problem 7.9 Let a; = 3 and a,4+1 = a, —naZ,n € N.

3
a) Prove that a; + a3 + ... +a, < 3 for all n € N.

b*) Find "good" bounds for a,,i.e. such two well calculating function
I (n) and w(n)such that I (n) < a, < u(n) for all n greater then some ng

Qn . Qn
d lim — = lim — =1
M e un)  noeel(n)
( This equivalent to lim I _ lim M =1or to
lim —— = lim 7”):1),
n—oo u (n n—oo U (n)

We call two function [ (n) and u (n) asymtotically equal and write

it {(n) ~wu(n)if nILH;O i((z))
bound

iff I(n) ~u(n) and I (n) < a, <u(n).
c) Determine asymptotic behavior of a, ,i.e. find function asymptotically
equal to a,.

(or more simple question: Find lim n
n—oo

= 1. Thus, function [ (n) and u(n) is good

2a,).

Problem 7.10 )
ar —2
Let sequence (a,) satisfy to recurrence a,13 = ————,n € N.Prove that:

2
i. If a1 = 1 then (a,) is bounded;
ii. If a; = 3 then (a,) is unbounded.
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Problem 7.11 3

1
Let sequence (a,,) defined by a; = 1,a,,41 = 70n + —,n € N. Prove that:
an,

i. (a,) is bounded;

2 n
ii.Prove that |a, — 2| < <3> ,neN.

1
Generalization: a,4+1 = pa, + —, n € N for any given p € (0,1).
a

Problem 7.12 (Bar-Ilan University math. olympiad, Israel).
Let ap = 1,ap41 =1 + —.,n € N. Prove that there is real number b which

for all n € N satisfy 1nequahty aon_1 < b < agy,.

Problem 7.13
79

Let ap =1 and ap41 = — + — for n =0, 1,2, .....Prove that
2 an a? — 2
is an integer for every natural n.

Problem 7.14(All Israel Math. Olympiad in Hayfa)

Given m distinct, non-zero real numbers a1, as, ..., @y, m > 1.

Let A, = aj + aj + .. + a], for any natural r» > 1.

Prove that for odd m inequality A, # 0 holds for all r up to finite
set of values 7.

Problem 7.15%(#7,9-th grade,18-th All Soviet Union Math
Olympiad,1984, Proposed by Agahanov N.H.)

T
Let z1 = 1,290 = —1 and xn+2:xi+1 f?n,nGN.

Find lim z,.
n—oo

Problem 7.16
Given sequence of positive numbers (a,) such that a,11 < a, (1 —ay).
Prove that sequence (na,) is bounded.

Problem 7.17 (BAMO-2000)
Given sequence (a,,) such that a; > 0 and a2 < a,, — ap41,n € N.

Prove that a,, < — for all natural n > 2.
n

*Problem 7.18 (SSMJ 5281)
For sequence {an}n>1 defined recursively by

Gpy1 = 1+ forneN ar=a>0,

o0
determine all p051tive real p for which series Y a, is convergent.

n=1
Problem 7.19
Given a3 = 5,a,41 = a2 —2,n € N.
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. . an+1
a) Find lim —*t .
n—0o0 @142...0yn

1 1 1
b) Find lim ( + + ...+ ) .
n—oo \ a1 a1ao a1042...0p
Problem 7.20°

a
Let a1 = a,where a > 0,a,41 = n

1+ an
a) Prove that sum S, = a; + a1 + ... + a,, is bounded ;
b*) % Find "good" bounds for a,, if a; = 9.

(Or, find asymptotic representation for a,,)
c) Find the lim nZa,.

n—oo

,neN.

% Problem 7.21 (One asymptotic behavior) (S183)
Let sequence (p,,) satisfied to recurrence

2
Pn=DPn-1— pnilan =1,2,.. and Po € (O’ 1) .
2 2
Prove that ———— < p, < ——,n € N, where p := —.
n+vn+p+1 n+p Do
8 Inequalities and max,min problems.

Comparison of numerical expressions.
Problem 8.1 (81-Met. Rec.)
Determine which number is greater (here V is sign of ineqeality < or >
in unsettled state).
a) 311 v 1714,
b) 127% v 51318 ;
c) 5336 v 3653;
2
d) tan34°V 3’
e) sin1Vlog; /2 ;
f) 1Og(’n,—l) nv logn (n + 1) )
h) 10030 v 300!;
g) (n)?vn"

i) \/2 +vV3+V2+...V \/3 + V24 v/3+ ... (n roots in each expression).
For any natural n compare two numbers a,, = \/2 +v3++v2+ ... and
by, = \/3 + V2 + /3 + ... (each use n square root simbols). What is greater?

Proving inequalities
Problem 8.2 (Inequality with absolute value)
Let a, b, ¢ be real numbers such that a + b + ¢ = 0.Prove that
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1
a-b-cl < 7 max {jaf® b |’}

Problem 8.3 (69-Met. Rec.)
1
Let z,y,z>0and x +y+ 2z < ok Prove that

1
(1-2)(1-y)1-2)> .

Problem 8.4 (Problem 6 from 6-th CGMO, 2-nd day,2007).
For nonnegative real numbers a, b, c with a + b+ ¢ = 1, prove that

a+¥+¢5+\/6§\/§.

Problem 8.5 (70-Met. Rec.)
Prove that for any positive real ay,as, ..., a,,n > 3 holds inequality
C. a1 —ag O G — Qg2
—— >0 (Or, ——————— >0 (apst1 = a1, 0p12 = az).
cyc as + as ( z; 41 + QAi42 ( nt et )
Problem 8.6 (71-Met. Rec.)
For any positive real a, b, ¢ prove inequality
ad b c3 a+b+c
2 2T 72 T 2 32 ‘
a?+ab+b b +bc+c ct+ca+ta 3

Problem 8.7 (72-Met. Rec.)
Prove that any nonnegative real a, b, ¢ holds inequlity
a® + b° + ¢ > abc (ab + be + ca) .

Problem 8.8 (74-Met. Rec.)

1
Prove that /4a +1+v4b+ 1+ v4c+1< V21 ifa,b,c > — and
a+b+c=1.

Problem 8.9 (75-Met. Rec.)
Prove that (z1 + @3 + ... + @, + 1) > 4 (23 + a3+ ... +a2),z;€[0,1],
i=1,2,...n.

Problem 8.10 (76-Met. Rec.)
Let z, y, z be positive real numbers. Prove that 2% z+y3x+2%y > 2yz (v +y + 2) .

Problem 8.11 (77-Met. Rec.)(Oral test in MSU)

T1Y1 + 352y1>m1 ($2y2 + $1y2>m2 > 1 for real
T1Y1 + T1Ye2 T2Y2 + Taln -

positive x1,x2,y1, Y.

Solve inequality <

Problem 8.12 (78-Met. Rec.)
Prove inequality

\/§+\/4—2\/§—|—\/6—2\/€—|—...+\/2n—2\/n(n—1)2\/n(n+1).
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Problem 8.13 (79-Met. Rec.)
Given that aq,as, ..., a, are positive numbers and a1 +as + ... + a, = 1.
Prove that

n k 2 4
S agy/1— ( > ai) < -
k=1 i=1 5

Problem 8.14 (84-Met. Rec.)
Let a1, as9, ..., a, be positive real numbers. Prove that
(a1 +ag+ ...+ an)2

,ifn=2,3
aras +asas+ ...+ ap_1a, +ana; < n
142 203 n—1Un nWl > (CL1+CL2+...+CL”)2
4
Problem 8.15 (85-Met. Rec.).Original setting.
Prove that for any numbers aq, as, ..., a, € [0,2],n > 2 holds inequality
n n
> 2 lai — a5l <n?
i=1j=1
*More difficult variant of the problem:
n

Jifn >4

Find max > |a; —a;|, if a1, a9, ..., a, be any real numbers such that
1<i<j<n
|ai - aj| <2,4,5 € {1, 2, ..., n} .

% Problem 8.16 (as modification of S97,MR )
For any real z1,xs, ..., x, such that x1 + x5 + ... + z,, = n prove inequality
33,22 (w% +a3+ ..+ m%) <n.

*Problem 8.17 (W6, J. Wildt IMO, 2014)
Let D1 be set of strictly decreasing sequences of positive real numbers
with first term equal to 1.For any xy := (21, 22, ..., Zn,...) € D1 prove that
& z3 4
n=1 Tn + 4$n+1 -9
and find the sequence for which equality occurs.

% Problem 8.18 (SSMJ 5345)

Let a,b > 0. Prove that for any x,y holds inequality
lacosx + beosy| < y/a2 + b2 + 2abcos (x + y)

and find when equality occurs.

Problem 8.19
For any natural n and m prove inequality
(n™+nm L+ n+1)" > (m+ )" ()™

Y Problem 8.20
Prove that (n + 1) cos T
n+1

T
—ncos — > 1 for any natural n > 2.
n
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Finding maximum,minimum and range.
Problem 8.21 (82-Met. Rec.)

—z? 4221
Find the min 6;621—77;_'_3 without using derivative.

Problem 8.22 (83-Met. Rec.)
1 1
Let S (z,y) :=min {x, —,y+ } where z,y be positive real numbers.
Yy x
Find max S (z,y) .
T,y

* Problem 8.23(58-Met. Rec.).

Find the maximal value of remainder from division of natural number n
by natural number a, where 1 <a <mn ( max 7, (n),neN).
<a<n

Y Problem 8.24

Find min F (z,y, z) ,where F (x,y,z) = max {|cosz | + |cos2y|, |cosy |+ |cos2z|, |cosz |+ |cos2z|}.
T,Y,2

Problem 8.25 (73-Met. Rec.)(M1067, ZK)
Let x,y, 2z be positive real numbers such that xy + yz + zz = 1.

1—x2+1—y2+1—22'

Find the minimal value of expression

* Problem 8.26** (SSMJ 5404)

For any given positive integer n > 3 find smallest value of product

1 1
—t ——+ ... =1
1+x1+1+z2+ +1+:L'n

T1%2...x, Where x1,xo,...,z, > 0 and

9 Invariants.

Problem 9.1 (65-Met. Rec.).

a—b a+b b
b ' b a
Is it possible that after several such transformation starting with fraction
1/2 obtain the fraction 67/917

b) An arbitrary pair of fraction (%, g) may be replaced by one the following

a
a) An arbitrary fraction — may be replaced by one of the fractions

S}

pairs of fractions
a+b c+d a—b c—d b d
b ' d ’ b ' d "Na'c)’

Is it possible that after several such transformation starting with the pair

(1/2,3/4) obtain the the pair (5/6,9/11)7

c) Given the triple of number (2, V2,1 / \/5) .Allowed any two numbers from

current triple (a, b, ¢) replace with their sum divided by V2 and their differ-
ence

divided by v/2. Is it possible after some numbers of allowed transformations
obtain the triple (1,v/2,v2—1).
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Problem 9.2 (66-Met. Rec.).

On Rainbow Island living 13 red, 15 green, 17 yellow chameleons.
When two chameleons of one color meet each other then nothing
happens, but if they have different color, they both change the color
to the third one. Is it possible that with time all chameleons on
island became of one color?

Problem 9.3

In the box are 13 red and 17 white balls. Permitted in any order and
any number of the following operations:

1. Remove from the box one red ball and put it in a box two white balls;
2. Put it in a box one red ball and two white balls;

3. Remove from the box two red balls and put it in a box one white ball;
4. Remove from the box one red ball and two white balls.

Is it possible that after some number of permitted operations to lay in
the box 37 red and 43 white balls?

9.1 Miscellaneous problems.

Problem 10.1 (1-Met. Rec.)
The 8 pupils bring from forest 60 mushrooms. Neither two from them
bring mushrooms equally. Prove that among those pupils has three pupils,
whose collect amount of mushrooms not less than the other five pupils.

Problem 10.2 (2-Met. Rec.)

2000 apples lies in several baskets. Permitted to remove the basket and
removing any number of the apples from baskets.

Prove it’s possible to obtain situation that in all baskets that remains
numbers of apples are equal and common number of apples would be
not less then 100.

Problem 10.3 (3-Met. Rec.)
Prove that digit of tens in 3™ is even number.

Problem 10.4 (7-Met. Rec.)
Does exist natural number such that first 8 digits after decimal dot
of v/n are 198519867

Problem 10.5 (12-Met. Rec.)
Prove that if 2a+3b+6¢ = 0, a # 0 then quadratic equation azx?+bx+c =0

has at least one root on the interval (0,1).

Problem 10.6 (13-Met. Rec.)
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Prove that if a (4a + 2b + ¢) < 0 then b* > 4ac.

Problem 10.7 (18-Met. Rec.)
Prove that derivative of function

z—1 -3 z—2n+1
f(z)ias—Z.x—4."" T —2n
is negative in all points of domain of f (z).

Problem 10.8 (20-Met. Rec.)
Is it always from the sequence of n? + 1 — th numbers ai, ag, ..., Gp2, Gp2 41
is possible to select a monotonous subsequence of lenght n + 17

Problem 10.9 (22-Met. Rec.)
Let natural numbers n,m satisfy inequality /7 — m > 0. Then holds in-
n
equality
1

Vi-s &
n mn

As variant : Find max {m2 —n? | m,n € N and % < \ﬁ}

Problem 10.10 (39-Met. Rec.)

Rational number represented by irreducuble fraction b belong to

6 7
i l{—,—|.P h > 28.
interva (13, 15) rove that ¢ > 28

Problem 10.11
Find all one hundred digits numbers such that each of them equal to

sum that addends are all its digits, all pairwise products of its digits
and so on,... and at last product of all its digits.

Problem 10.12 (51-Met. Rec.)
Let P (x) be polynomial with integer coefficients. Known that P (0) and
P (1) are odd numbers. Prove that P (x) have no integer roots.

Problem 10.13 (52-Met. Rec.)
Known that value of polynomial P (z) with integer coefficients in three
different points equal to 1. Is it possible that P (z) has integer root?

Problem 10.14 (53-Met. Rec.)
Let P (x) be polynomial with integer coefficients and P (n) = m for
some integer n, m(m # 0). Then P (n + km) divisible by m for any natural

Problem 10.15 (61-Met. Rec.)
Find the composition g () = f (f (...f (z) ...)), where
—_—

n—times
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a) /(@) = =
b) f@ =]

Sz +V3
Problem 10.16 (62-Met. Rec.)

T

4 1 2
Let F(z) = Find F(— 4+ F(— ) +..+F(1).
et Fi(2) = g Fin <1988) * <1988> +etFQ)

Problem 10.17(63-Met. Rec.)
Let f(¢q) the only root of the cubic equation ® + pr — ¢ = 0,where p is
given positive real number. Prove that f (¢) is increasing function in ¢ € R.

Problem 10.18 (64-Met. Rec.)
Let P (x) be a polynomial such that equation P (x) = x have no roots.
Is there a root of the equation P (P (z)) = z?

Problem 10.19 (67-Met. Rec).

The two rows of boys and girls set (in the first row, all boys, all girls in
the second row), so that against every girl stand the boy that not lower
than girl, or differs by the growth from her not more than 10 cm.
Prove that if children positioned in the each row accordingly their
growth then against each girl will be a boy which again not lower

than girl, or differs by the growth from her not more than 10 cm.

Problem 10.20 (86-Met. Rec.)
Find all values of real parameter b for which system
{ x> (y—b)°
y > (z—1b)’
has only solution.

*Problem 10.21 (CRUX 3090)
Find all non-negative real solutions (z,y, z) to the following system
of inequalities:

22(3 —4y) > 22+ 1

2y(3 —4z) > 22+ 1

22(3 —dx) > % +1
*Problem 10.22 (87-Met.Rec.)
Let Ay, As, A3, A4 be consequtive points on a circle and let a; is number
of rings on the rod at the point A; = 1,2, 3, 4. Find the maximal value
of 2—rings chains, that can be constructed from rings taken by one
from any 2 neighboring, staying in cyclic order, rods.

Problem 10.23 (Problem with light bulbs).
n light bulbs together with its switches initially turned off arranged in a
row and numbered from left to right consequtively by numbers from 1 to n.
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If you click to the k-th switch than all light bulbs staying on the places
numbered by multiples of k change state (turned off, turned on).

Some person moving from left to right along a row of light bulbs
switch clicks each bulb (once). How many bulbs will light up when

he comes to the last light bulb.

*Problem 10.24 (0274, MR4,2013).
Let a, b, c nonnegative integer numbers such that a and b are relatively prime.
How many lattice points belong to domain

D:={(z,y) | z,y € Z,z,y > 0 and bz + ay < abc} .

Problem 10.25 (102.-Met. Rec.)
Let « be irrational number. Prove that following function f(x) is non
periodic:

a) f(z)=sinaz + sinz;

b) f(x)=sinax + cosz;
c) f(z)=tanazx + tanz;
d) f(x)=tanax + sinz.

Problem 10.26 (103.-Met.Rec)

Let a1 = -, an+1 = an + CLTQL, n € N. For any n > 2 determine

L + L + ...+ L
a1 +1 as +1 a, +1 '

Problem 10.27 (Austria — Poland, 1980).
Given numerical sequence which for any k, m € N satisfies to inequality
|am+k — Qg — am| <1
o 1
q q
Problem 10.28 (M.1195 ZK Proposed by ,Proposed by O.T.Izhboldin)

Prove that for any p, ¢ € N holds inequality

1
<=4 -
p

1
Prove that if sequence (a,,) satisfied to condition |ap4m — ap — am| < ey
n+m
then (a,) is arithmetic progression.

*Problem 10.29 (3571,CRUX,2010)

For given natural n > 2, among increasing arithmetic progression x1, za, ..., T,
such that 2% + 23 + ... + 22 = 1, find arithmetic progression with greates
common difference d.

Problem 10.30.Quickies-Q2(CRUX?)
What is the units digit of the real number

(15+ ,—22())2004_1_(15_'_ /—220)2005 2
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Part 111
Solutions.
1. Divisibility.

Problem 1.1
Noting that 144 = 122 and 1444 = 382 we will prove that there are no other
squares among numbers a,, = 144... 4.
——

n times

410" —1)  13-10" —4

Since a,, = 10" + suffice to prove that 13- 10" —

4 can’t be a perfect square for n > 4.Let n > 4 and assume that 13-10" — 4 =
12 <= 13-10" =% + 4 for some t € N.

Since n > 4 then 13-10" : 16 = > +4 : 16.
Since t2+4 : 16 = 244 : 4 then ¢t = 2k for some k and , therefore,

t244:16 <> 4(k*>+1) 116 <= k*>+1:4imply k is odd, that is k = 2/+1.
Then ¢ 4+ 4 = (41 4+ 2)° +4 = 1612 + 161 + 4 isn’t divisible by 16 and this

contradict to t2 +4 : 16.

Using modular notation we have t> = —4 (mod 16) == t = 2k and, there-
fore, t> = —4(mod 16) <= 4k?> = —4(mod 16) <= k? = —1(mod4) but
that impossible because for k = 0, 1,2, 3 (mod 4) we have k% = 0,1 (mod 4) .(This
kind of solution we call "Reduction by modulo 16”.)

Problem 1.2

This problem can be solved by reduction modulo 13. Indeed, since 385 =
—1(mod 13) and 182 = 52 (mod 13) = 1 (mod 13) then 385'980 = 1 (mod 13) and 18198 =
(182)940 = 1 (mod 13) .Hence, 3851989 + 181980 = 2 (mod 13) .There is no nat-
ural ¢ such that t? = 2(mod 13). Indeed, since t = r (mod 13), where r €
{0, 41,42, ..., 46} then > = r? (mod 13) and 72 (mod 13) € {0, 41, +3, +4}.

But 2 (mod 13) ¢ {0,+1,+3, £4}.

Addition.

Note that natural numbers represented in form 3k + 2,5k £ 2,7k + 3,7k +
5,7k + 6,11k + r,where r € {2,6,7,8,10} can’t be a perfect square.

Problem 1.3

Let f,, = fofo...of (n-time composition). We should prove that ged (f,, (a), fm (a)) =
1 for any n,m € N and n # m.

First note that ged (z, f (2)) = 1.Indeed, ged (2, f (x)) = ged (:c, 3 —x+ 1) =
ged (z, —x 4+ 1) = 1.Suffice to prove that gecd(z, fr (z)) = 1 for any n € N
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and any integer z. Note that f, () can be represented in the form f, (z) =
P, () + lwhere P, (z) some polynomial with integer coefficients.
Indeed,

Py (z) =2® = 1 andfpi1 (x) = 2Ppyr (2) + 1= [ (fo (2)) =

(xP, (x) + 1) (2P, () + 1) +1 = 2 (2?P3 (z) + 32P2 (z) + 2P, (z)) +1 =

Poy1 (v) = 2% P2 (z) + 32P2 (z) + 2P, (z) .

So, ged (z, fn (x)) = ged (x, 2Py, (x) +1) = ged (z,1) = 1.(Here was used
again the Preservation Lemma (see solution to the Problem 6.1))

Problem 1.4
Consider 2 cases.
1. z < 27.Then

427 + 41000 + 4% — y2 22:6 (1 4 254—236 + 22000—230) —_ y2 —

Y= g = 1 + 254—2.'E + 22000—2.’,c — a2.

Since 1_"_254—2.%_"_22000—2.% > 22000—2.’10 and 1+254—2m+22000—2m < 1+2_21000—x+
22000721’ — 25472r < 210017m then 22000*2&3 < a2 < (1+2100071)2 TN
21000—2 g < 1 4 21000—=2 that is the contradiction.

2. Let 27 < x. Then,

427 4 41000 4 gz _ Y2 = 954 (1 492054 4 21946) =y =

Y= 227a — 1+ 221754 + 21946 — CL2.

Note that 1+ 22754 1 91946 — | 4 91946 | 92054 _ | | 9. 91045 | (92-27)?
be perfect square if 1945 = © — 27 <= x = 1972.For any z > 1972 we have
2230754 < a2 and (12 < 1+2m726+22x754 — 1+2.2z727+221754 — (1 +2:1:727)2
since 27726 > 21946 «— 2 26 > 1946 <= 2 > 1972.

Hence, (27727)° < a2 < (142°°27)% = 27727 < g < 1+ 2727 that is
the contradicton.

So, there is no x > 1972 for which 427 4 41000 4 4% is a perfect square and
answer to the problem is x = 1972.

Problem 1.5

Suppose that there is m such that 5® — 4" = m?.Then m = 1 (mod 2)
m = 2k + 1 and, therefore, 5" = 4" +4k(k+1)4+1 = 5" =1 (mod38)
n=2t1teN.

—
S
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Thus, 5" — 4" = m? <= 52 — 4% =m? — 5% —m? =4 —

5/ —m = 2P 5t = 9p—1 4 9¢—1
5t 4 m = 24 — m=29"1_92r"1 —
p+q=4t,p<gq ptq=4t,p<gq
5t = 2p~1 (2077 4 1) 5t =2¢7P 4 1
m = 2¢—1 —gp—1 = m = 2¢~1 —gp—1 = {

p+qg=4t,p<q p=1g=4—-1,teN

Since n > 2 then t > 1.But for any ¢ > 2 holds inequality 5 < 4%'~1(can be
proved by MI ). Thus, set {5" — 4™ | n > 2} is free from squares.

Problem 1.6
a) Suppose that there is m such that 2" + 4™ = m2.

n 9 n =2k
Then 2" (14 2") =m* = { m— 2k

= 1+2% =42 —

2%k < a2 < (2]“ + 1)2 <= 2F < a < 2F 41 that is the contradiction.

b*) First consider particular case.

Let n = 0. Then we obtain equation 1 + 4™ = k? which have no solutions
inm e NU{0}.

Indeed, since k = 2p+1,p € N (because p > 2 is odd) then 14+4™ = k? <=
4Mm=pp+1).

If p is odd it must be equal 1 (because prime decomposition of p (p + 1) is
22777,).

Then 4™ = 2,that is the contradiction;

If p is even then p + 1 > 1 is odd and, therefore, has odd prime divisor —
that is the contradiction again. Thus, 1 + 4™ can’t be a perfect square.

Then for further we can assume that n € N. We will prove that if 2" +4™ =
k% for some m € NU {0} and k € N then n > 2m.

Indeed, assume that n < 2m we obtain 2"+4™ = k? <= 27 (1 +422m7") =

k2.
If n = 2m then 2"t! = k2 that is a contradiction because n + 1 is odd;
If n < 2m then 14+2%2"~" is odd and, therefore, from 27 (1 + 227"_") =k
follows that n = 2p for some natural p and k = 2Pq for some odd ¢q. Hence,
1+4+220m=p) — g2 — 144™mP = ¢2But 1+ 4™ P can’t be a perfect square.
Since n > 2m then 2" + 4™ = k? <= 4™ (2”72’” + 1) = k% and,
therefore, 2" ~2™ 41 is a pefect square. Consider equation 2P +1 = ¢? <= 2P =
(g—1)(g+1) wherep € Nand ¢ > 1is odd. Then ¢g—1 = 2%, ¢g+1 = 2°, where
b>aand b+ a=p.
We have g = 2071 420712071 — 2071 =] « 2071 (2070 — 1) =1 —

a=1 — a=1 N =3
b—a=1 b=2 p=3

- rka t
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Thus, 2P +1 = ¢? < { Z - and, therefore, 2" +4™ is a perfect square

3
=3
iff n=2m+ 3 and me NU{0}.

Problem 1.7

We should find all n for which 3™ + 55 = m? for some m.

Case 1. Let n = 2k + 1 then 3%**! 4 55 = m? = m? =2 (mod4).
But that impossible because for any m holds m = 0,1 (mod 4).
Case 2. If n = 2k then 3%¢ + 55 = m? = 32¢ < m?.

For k such that

3% 455 < (3 +1)° = 55<2-3F+1 « 27< 3" «— 4<k

we have 32 < m? = 3% 4 55 < (3¢ + 1) = 3% <m < 3% 4 1,that is the
contradiction.

Remains consider k =1, 2, 3.

If k=1then 3?* +55=94+55=64 = n=2,m=23

If k = 2 then 3°* + 55 = 81 + 55 = 136

If k =3 then 3% 4+ 55 = 3% 4 55 = 784 = 282 — n = 6,m = 28.

Answer: n =2,6.

(Variant of the problem.

Find all n € N such that a™ + b is perfect square if:

a) a=4,b=5;
b) a =8,b=09;
c) a=3,b=55).

Problem 1.8

a)

Solution 1.(Elementary with Math Induction)

Note that ag = 32" +2=11,a; =32 +2=3%24+2=3%2_94 11 =

9(3% —1)+11 and 3% —1 = (3° —1) (32" + 320+ ... + 3% + 1) divisible
by 11 because 3° — 1 =243 — 1 =112 . 2.

And we will prove, using Math Induction, that a,, divisible by 11 for any
n € N.

Since Base of Math Induction already provided, remains the to prove (Step of
MI) namely, for any n €€ N in supposition that 11 | a,, we will prove 11 | ay41.

n n n 16
We have an,q = 327" +2 =32""116 L9 = ((32“ o +2) - 2) -
(an —2)"° + 2. Since

(an—2)"" = a)° - (116) a2+ (126> ald 22— Gg) 020427

and 11 | a,, remains to prove 11| (2'6 +2) < 11| (2% +1).
We have 215 + 1 = (25—|—1) (210—25+1) :3~11-(210—25+1).
Solution 2.(Elementary, using factorization
a” —b" = (a—b)a"t +a""2b+ ... + b").

- rka t
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Since remy; (3%) =1 (3% —1 =243 —1 =112 - 2) we will find rems (2"1) .

We have 24" +1 = 2 (16" — 1)42 and since 16" —1 = (16 — 1) (16" ! + ... + 1) divisible
by 5 then 24! = 5k + 2 for some natural k.

Hence, a, = 3%"7242 = 3529411 =9 (3°%% — 1)4+11 =9 (3°% — 1)+11 =
9(3°—1) (351 4+ L +1) +11=18-112 (3°*=D 4 4+ 1) + 11.

Solution 3.(Academic)

Since by Little Fermat Theorem 3'° = 1 (mod 11) and 24" = 1 (mod 5) (because
24 = 1(mod5)) yield 2*"*! = 2(mod10) then 2*"*! = 10k + 2 for some
k € N and, therefore, 32" +2 = 310k+2 1 9= 32 4 2= ((mod 11).

b) Since 22" +3=23""" _g 411 =8" 8411 =8 (834“1 - 1) +11
then 11| b, <= 11]8""~1—1.

Also note that 34" —1 = (3% — 1) (3*(*=1) 4 34(n=2) - 4 1) =80 (3*("=D) 4342 4 | 4+1) =
10k,

where k=8 (34n=1 4 34=2) 4 +1).

Hence, 83" 11 = 2301 — (210) 1 — (210 — 1) ((219)" 7" 4 (210) 77 41) =
1023 (21971 4 (21977 1) = 1193 ((210) T 4 (2197 1)
c) Note that co = 13,¢; = 23" +5 = 224345 = 22138113 =8 (2240 — 1) +
13 and 2240 — 1 divisible by 13 because 2 = 65—1 =5-13—1 implies 13 | 212 —
1 and, therefore, 2240—1 = (212)2071 =(22-1) ((212)19 + (212)18 + .+ 1) =
13k for some k € N.
We will prove that 13 | ¢,, for any n € N.
Since 2'2 = 1 (mod 13) and 3%" = 1 (mod4) (because 3% = 1 (mod4)) yield
31Tl = 3 (mod12) then 3%"*! = 12k + 3 for some k € N and, therefore,
en =28 45 = 21203 L 5 =93 4 5 =0(mod 13).

Problem 1.9.

Suppose that 5" —1 is divisible by 4 — 1 for some n € N.Since 4" —1 : 3 then
5™ —1 is divisible by 3 as well, that is 5™ = 1 (mod 3) < 2" = 1(mod3) <

n =0 (mod?2). So, n = 2k and, therefore, 52% — 1 :4?% —1 <= 25 —1: 16" —

1 = 25F —-1:15 = 25K —1:5 <= 1:5, that is contradiction.

Problem 1.10
Since a™b" = c"d"® then WLOG we can assume that n = 1. Let k :=
ged (d,b) and g := P = then d = kq,b = kp,ged (p,q) = 1 and since
d _q

ab:cd@)g—f then a = tq,c = tp.
c

=5 =
Therefore, a2 +b%+c2+d? = 22 + k2p? +t2p> + k2¢% = (p2 + q2) (k2 + t2) .

bS]

Problem 1-11
We will find remig (24712) .Since 2472 = (—1)*"*! (mod 5) <= 2%"+2
—1(mod5) <= 2%*2 = 4(mod5) and 22 = 0(mod2) then 2%"+2
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4 (mod 10) and, therefore, 53" — 22" = (5" —2%) (mod 11) = 0 (mod 11) .

Problem 1.12
Suppose that for some natural n there is natural m such that

(n+1)°+ (n+2)°+ ...+ (n+1000)* = m?

1000n2 + 21 (1 + 2 + ... + 1000) + 1% + 22 + ... + 1000% = m? <=

1000 - 1001 - 2001 9
=m

1000n2 + n - 1000 - 1001 + G

1000n2 4+ n - 1000 - 1001 4+ 500 - 1001 - 667 = m?2.

Since m? divisible by 500 then m divisible by 50, that is m = 50k for some
k € N and, therefore,

1000n% +n - 1000 - 1001 4 500 - 1001 - 667 = 2500k? <=

2n? 4 2002n + 1001 - 667 = 5k? = 2n? +2n + 2 =0 (mod 5) «=

4n2 +4n+4=0(mod5) < (2n+1)> =2 (mod5) that is contradiction,
because there are no squares of integers which is congruent 2 by modulo 5.
Indeed, for r (mod5) € {0, 41,42} we have r? (mod5) € {0,41}.

Problem 1.13

Let 2n+1 = ¢2,3n+1 = p?.Since ¢% odd then g = 2k+1 for some k € Z and,
therefore, 2n + 1 = (2k +1)° <= n = 2k (k+ 1) .Hence, p> = 3- 2k (k+ 1) +
1=6k>+6k+1 = pis odd, that is p = 2t + 1, for some integer t.Therefore,
PP =6k2+6k+1 < (2t+1)°=6k2+6k+1 <

9 (t+1) = 3k (k + 1). Then 3n = 6k (k + 1) _4t(t+1)
Since p?+¢° = 5n+2 then p?+¢* = 2 (mod 5) +—=

‘8 = n:8.
1 (mod 5)
1 =

(mod 5)

n =p? —¢*> = 0(mod5).Thus, n : 40.

Problem 1.14

Let S (n) be sum of digits of natural number n. Assume that there is a
N such that S (a?) = 1985. Then a? = S (a?) (mod3) = 1985 (mod 3)
—1(mod3) but that isn’t possible because for any integer a we have a
0,41 (mod3) = a?=0,1(mod3).

I m

Problem 1.15.
Let 2" + 4™ = t2 Firstly we will prove that n # 2m. Suppose that n
2m.Then 22™ + 4™ =2 «= 22m+1 — 2 that is the contradiction.
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Consider case n < 2m.Then 27 4+ 4™ = {? «— 2" (1 + 22’"_") =2 =

t =2Pq
Hence, 1+ 22(m=P) = ¢2 — 22(m=P) < ¢2 < (1 + 2m_p)2 = 2"P <
q <1+ 2™7P that is the contradiction.
Let now n > 2m.Then 2" + 4™ = ? <= 2" (1+42"7?™) = {2 Since
n can’t be even (because otherwise we get contradiction ) then n = 2p +
1 for some natural p > m and, therefore, 22" (1+22(1’*m)+1) = t? =
14+ 22(p—m)+1 — q2
{ t — 2777.q
Letl:=p—mthen [ > 0and 14221 = ¢ = 22+l = (¢ - 1)(¢+1) <

{ n=2p for some natural p and odd q.

for some natural q.

q_1:2a q:2b—1+2a—1
g+1=2° — 1 =2b-1 a1 <:>{a1qb
0<a<ba+b=2+1 0<a<ba+b=2+1 =5

Hence, m = p—1, n =2p+ 1 and ¢t = 3- 2P~ ! for any natural p,that is
2201 4 4p=1 — (3.9¢0-1)%,

Problem 1.16

a) Since ordy, (n!) = [g] + [2%] +..+ [2%] where k is such that n > 2% and
n < 2 then
ord (n|)<ﬁ_~_£_~_ +£_E 1+1+i+ _|_L —
PRS2 22 T gk g 2 22 T2kt )
1—1/2k 1

_ (p—1)n n [(p—l)n] { n }
b) Since < k=1,2,... then <

) D » k pF1
and, therefore,

ord, ((p= 1)) = 8 [ <o 8 [ = ora, (n

c) By Legendre formula ord, ((n!)!) = )
2hmaxt1 > )

| —1)! —1)! | — 1)
%m;mgmzﬂmlwmmrly$nnim“M&

fore,

ordy (1)) 2 n 35 [(”;Cl)!] =n-ordy ((n— YY) = ord, ((((n — HHH™).
k=1
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. | kes [ n kmax [ 1, '
d) Since ord, (('pn)) = ) [pk =n+ z [pkl =n+ ordy, (n!)
then ord, ((p;;)) = ordy, ((pn)!) — ord, (n!) = n.
e) (n)! > ((n— 1™ = (n))! > %' RPN (n)In" > (n)™.

We will prove more general inequality m!n™ > m™ for any m,n € N,;n > 3.
Math Induction by m € N;m > 3.

Let m =1 then 1ln! > 1! <= n>1;

m = 2 then 2In? > 22 < 2n?> >4 < n?®>2;

m = 3 then 3In3' > 33 «— 6nf > 27 < 2n% > 9 holds for n > 3.
Instead step of MI we will use multiplicative reduction, that is we will prove

inequality
1)lpm+t 1"t
(1) (m+')n MmN
m.n’ﬂl m’”t
We have

1m+1 1m 1 m 1 m
(1) = (m—&—l)nz% = nz(m;m) = n> <1+> = n>e> (1+>

m m m m

Applying inequality m!n™ > m™ for m = n!l,n > 3 we obtain inequality
() > ((n—1)N™ for any n > 3.

If n=1then (1)! > (1 -1 = 1=1.

If n =2 then (2!)! > ((2— 1)1)* <= 2> 12 =1 also holds.

So, (n!)! > ((n —1))™ holds for any n € N.

Problem 1.17 '
a) Suffice to prove that ord, ((n!)!) > ord, ((n!)("_l)') = (n —1)l-ord, (n!) for

any prime p.
By Legendre formula

max '
ord, (nD)!) = 3 [nk} , wherept™> < nl andpFm>F1 > nl.
k=1 LD
! — 1) !
Since n—k = w > (n—1)! {Z} then [nk} > (n—1)! [nk] and,
p p p p p
therefore,

Emax [ m
ordy ((n!)!) > (n —1)! 1;::1 ij} =(n—-1!ord,(n!) =(n—1)!ord, (n!).
. n! n—1)n n—1)!
b)SlnceF:( p"’) Zn[( pk)}then

] = [
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n
c) n—k =n"1. Ek >nnt {Tﬂ = {nk} >nnt [TZ] and, therefore,
p p p p p
ord, ((n™)!) > n""tord, (n!)
nerk nm 'nm 'nerk nm
e) —— = nk . — 2> nk - ] = - ] >nk [k] and,therefore,
p L P p p

ord, ((n"”'k !) >n* . ord (n™1)

pl

ordy, ((n-m)!) >m - ord, (n!).

f) nom >m [nl} — | m] >m nz] and,therefore,
p L p
!

g) First we will prove that ords ((2n)!) > ords (n!) + ords ((n + 1)) .
To prove that suffice to prove inequality

n n n+1
]2 (3] [5] 1e

For k = 1 holds equality n = [ﬁ] + {n * 1} .

2 2
0 1 ] 1 [ntt
Let k> LThen oy = H + 5 [ 5 ] :

Since for any positive  and natural m we have

Sa[a] e aznli] = Een(r] = 2o (2]
then
) () g 22 5]
Hence,

3] = (3] + 5]

and, therefore, ordy ((2n)!) > ords (n!) + ords ((n + 1)) .
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1
Let now p > 2.Note that 2n > p ({;] + [n;— ]) JIndeed, let n = Ip +

r,where 0 < r < n—1If r < n—1 then {n] = [nJrl] = k and, there-
p
1
fore, p([n} + {n—f— }) = 20k < 2pk +2r = 2nIf r = p — 1 then {n] =
p p p

1
k, {n + } =k + 1 and, therefore,
p

p({;] + [nZID — ok +p <2k +2(p—1)

because 2(p— 1) >p < p > 2.
Since

n n+1 2n 1 n 1 n+1
nzp |2+ = F 2t || T
p p p p p p p

]

then applying inequality — > [—} we obtain
m m

2n> 1 {n}_F 1 {n+1}>2n [n}_l_{n—kl}ﬁ
pk = pktpl Pt op | T pk pk

2n n n+1
— | 2|t
[ p } [p’“} Pk
and, and, therefore,

ordy, ((2n)!) > ord, (n!) + ord, (n+ 1)!).

v

Combinatorial solution.

2n
(2n)!
nn+1)! n41

2n 2n
2n\ - "\ n "\ n 2n
n( ) i (n+1) <= ——* is integer. But, ——* = ( ) eN.
n n+

1 n—+1 n—1

2 .
Note that . Since ged (n,n + 1) = 1 then ( n”) C(n+1) iff

h) (n+1)(n+2)...(n+m) : m! for any n,m.
First solution is combinatorial:

(n+1)(n+m2!)...(n—|—m) _ <n+:+1)'

Second solution.

1 2)... !
Since n+Dm+2)..(n+m) = (n+m) we will prove that
m! nlm!

ordy <(n+m)') >0 < ord, ((n+m)!) > ord, (n!) + ord, (m!).

nlm!
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Since [z + y] > [z] + [y] then {n —:m] > [nk} + {nﬂ and, therefore,
p p p

ordy, ((n+m)!) > ordy, (n!) + ord, (m!).

Problem 1.18
n(n+1)

Since S, = then S, =1 (mod5) <= n(n+1)=2(modb) <—

n?+n—-2=0(mod5) <= (n+2)(n—1)=0(mod5) <=

n+ 2 = 0(mod5) = —2(mod5)
n—1=0(mod5) = —4 (mod5)
Thus, n =5k -2,k e Norn=5k -4,k e N.
Another variant of solution:
Since 5 is prime then
Sp—1 1)—2 1) -2 .
LTEZ = %GZ = %GZ — (n+2)(n—1) 15 <

n+2i5 | n+2i5 _ [n=5k-2keN

. . =bk—-4,ke N
n—1:5 n+4:5 " k€

Problem 1.19 ) 5

Let a, == (V3+1)" + (V3-1)" = (4+2v3)" + (4—2v3)". Then
a, satisfy to the recurrence a1 — 8a, + 4a,—1 = 0 and a9 = 2,a7 = 8.S0,
an is integer for all n € N. Since (4 — 2\/§)n € (0,1) then from representation

(V3+ 1)2n =a, — (V3- 1)% and (V3+ 1)2n € (a, —1,a,) follows that
an, = [(\/34— 1)2n—‘ ([z] is ceiling of x)

We see that a,, : 2"t for n = 0, 1.From supposition a,: 2", a,_1: 2" and

Uni1 = 8an — 40,1 = 4 (2a, — a,_1) immediately follows that a,; : 2-2".
Let now by, = % then by = 1,b; = 2 and byy1 = by — by_1.
Since by 41 = by—1 (mod 2) then by, = 1(mod 2) and ords (agy,) = 2m + 1.
( agm = 22™H by, where by, odd for any m € NU{0}.)

2. Diophantine equation.

Problem 2.1
We will solve equation

3z — V922 + 160z + 800
y frd

T — 922 4+ 160z + 800 = (3z — 16y)°> —
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8y2 — 25

5r+3zy — 82 +25=0 < z = .
TSy — syt = 5yt

Note that
ged (8y® — 25,3y +5) = ged (y* + 15y + 25,3y + 5) = ged (3y* + 45y + 75,3y + 5) =

ged (40y + 75,3y + 5) = ged (y + 10,3y + 5) = ged (y + 10,25) € {1,5,25}.

Since z is integer iff ged (y + 10,25) = |3y + 5| then possible three options:
By+5 =1 <= y=-2, By+5 =5 <= y=0and |3y+5| =
25 <= y=-10.

8-4—25
Hence for y = —2 we obtain x = 645 —T7,for y = 0 we obtain x = —5
8-100 — 25
and for Yy = —6 we obtain z = m = —31.

32z — V922 + 160z + 800

S
% 16

is integer only for x = —5, -7, —31.

Problem 2.2

Since z = 2 — 2y (mod 2) then equation 22 —2xy = 1978 have no sulutions in
integers (z,y) with odd o because then x? — 22y = x (z — 2y) is odd, and
have no integer sulutions (z,y) with even x because then x? — 2xy is divisible
by 4 but 1978 isn’t divisible by 4.

Problem 2.3
Note that 2m? + m = 3n2 4+ n can be rewritten as

2m? —2n* +m—n=n? < (m—n)(2m+2n+1) = n?

and as

2

3m? —3n’+m-n=m? <= (m—n)Bm+3n+1)=

Hence, if m —n is a perfect square then it immediatelly imply that 2m+2n+
1,3m+3n+ 1 are perfect squares as well. Thus, suffices to prove that m —n is a

perfect square for any natural n, m that satisfies to equation 2m? +m = 3n? +n.
We have 2m? +m = 3n2+n <= m(2m+1)=nBn+1) < m_
n

3n+1
2m+1'
n+1 m a

Let E be irredusible fraction such that 1 = — = 7
n

Then = = 2 and sntl _a { bm—an—O =
n b 2m + 1 3bn —2am =a—b
B ab — b?
"7 32— 242
B a® — ab
T 3he — 242
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Since ged (3b? — 242, a® — ab) = ged (3b% — 2ab, a® — ab) = ged (3b — 2a,a — b) =

ged (b,a — b) = ged (b, a) = 1 and similarly ged (3b? — 2a%, a* — ab) = 1 then
n,m € Z iff |3b? — 2a%| = 1.

But 362 — 2a% = —1 have no solutions because

30 — 20> = -1 = a* = —1(mod 3)

and that isn’t possible.

So, remainse 3b%> — 2a? = 1 which have infinitely many integer solutions.

Since all integer solutions of equation 2m?2 +m = 3n? +n can be represented
in the form

(m,n) = (a2 —ab, ab — b2) where a,b be any coprime numbers satisfying
302 —2a%2 =1

then m —n = a® — ab — (ab — b?) = (a—b)°.

Problem 2.4

Let (z,y, 2) # (0,0,0) is integer solution of equation 23 —2y%—423 = 0. Since
x divisible by 2 then x = 2z then

8% — 2% — 423 =0 <= 423 — ¢ -2 =0 — yi2 = y=2 —

4o —8yP — 223 =0 = 223 — 4y} — P =0 = 2=22 =

203 — 4y} — 828 =0 = 2} — 20 — 423 = 0.
Thus, starting with non-zero solution (x,y,2) we obtain new non-zero so-

lution (z1,y1,21) = 3 (z,y,2). Similarly from (z1,y1,21) we obtain integer

1
non-zero solution (zs,ys,22) = 3 (21,91,21) and so on.....from (Zn,Yn,2n) #

1
(0, 07 0) we obtain (‘rn—i—la Yn+15 Zn+]-) = 5 (wrn Yn Zn) € N. Hence’ (:En, Yn, Zn) =
1
on (x,y,2) be triple of integer numbers for any natural n.Since |z|+ |y| + |z] €
N and (%n,Yn,2n) # 0 for any n then |z,| + |y.| + |2n] = W

infinite strictly decreasing sequence of natural numbers.

And that is the contradiction to Well Ordering Principle: Any non empty
subset of natural numbers has the smallest element. So, equation z3—2y%—423 =
0 have no non-trivial ineger solution.

Problem 2.5

We will find a solution in the form (x,y, z) = (2”7 2m, 2’“) .By sbstitution in
equation we obtain 237t1 4 25 = 27% and we claim
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3n+1=>5m 3n+2="7k — Tk = 2 (mod 3)
5m+1 =Tk 5m+1 =Tk 7k = 1 (mod 5)
We have
Tk = 2 (mod 3) k =2 (mod3) k =2 (mod3) —
7k =1 (mod5) 2k =1 (mod5) 2k = —4 (mod 5)

k = 2 (mod 3) k =2 (mod3) 5k = 10 (mod 15) _
{ k= —2(mod5) — { k = 3 (mod5) = 3k = 9 (mod 15) < 2k=1(mod15) <

k=8(mod15) < k=15t+38,t € Z.
Then, 3n +2 =7k +8 <= 3n = 105t + 54 <= n = 35t + 18 and
dm+1=7k+8 < bm =105t +55 <= m =21t +11,t € Z.
Thus, (z,y,z) = (23718221411 915448) g solution of equation 222 +y° =
27 for any natural ¢.
Indeed, 2 - (235t+18)3 + (221t+11)5 — 9l05t+55 4 9105t+55 _ 9l05t+56 _

(215t+8)7 .

Problem 2.6 (44.Met.Rec)
We will find a solution in the form (z,y, 2, t,u,v) = (,t,t,t,2v,v) .By sbsti-
tution in equation we obtain 4t3 = 16v* — v* <= 4¢3 = 15v*. If we can prove
that equation 4t> = 15v* has infinitely many natural solutions then original
equation has infinitely many natural solutions as well.
We will find a solution of equation 4¢3 = 15v* in the form (¢,v) = (4“15b, 4cl5d) ,a,b,c,d €

N.
3a+1=4c
3 _ 4 . 43a+17E3b _ gdeqrdd+1
Then 4t° = 15v* becomes 4 15°° = 47¢15 <— { 3= 4d 4+ 1

We have

3a+1=4c <= 4c—3a=1 <= 4(c—-1)=3(a—-1)

c—1=3p c=3p+1
{a_1:4p ,DEL <— { a=dp+1 ,p EZ.

In particular, { Z i Z]; : ?)) ,p € N give us infinitely many natural a, c.
o b=4q—1
Similarly, 30 =4d+ 1 < 3(b+1) =4(d+1) < d=3qg—1 ,q €

Z and, in particular, Cbli g((]] : i ,q € N give us infinitely many natural b, d.

Thus, (t,v) = (4*7315%~1 43%=215%~1) p ¢ € N give us infinitely many
natural solutions (¢,v) of equation 4¢3 = 15v*.Indeed, 4 - (441’_3154‘1_1)3 =
412p781512q73 and 15 - (43p72153q71)4 — 412p781512q73'
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Problem 2.7

From experience of solutions to problems 2.5,2.6 where we used that all
exponents are totaly coprime, can be impression that this equation have no
natural solutions becuase all exponents

aren’t totaly coprime. But it isn’t so. Here we can use another idea of
solution.

We will find natural solution represented the form (x,y, z,t) = (az3, bz?, 2, cu) .

For such (x,y, z,t) equation becomes (a4 + b5 + 1) 212 = ¢ty and we claim
a* + 1% + 1 be 4-th degree of some natural number. Easy to see that a =
2,b = 2 satisfy this requirement. Then for (z,y,z,t) = (223,222,z,cu) we
have 81z!2 = c*u* <= 32* = cu.Thus, we obtain infinitely many natural
solutions of equation x% + ¢ + 212 = #* represented by quads (x,y,z2,t) =
(223,222, 2,32%) ,z € N.

Problem 2.8

a),b),c)

Since for any integer number a can be represented in the form a = 3k +
r where r € {0,1,—1} then a® = 27k® + 27k?r + 9kr? + 73 and, therefore,
a® = r3 (mod9) for any a € Z. Thus, since r € {0,1,—1} then r3 € {0,1,—1} as
well. Hence, for z,y,2z € Z we have x = 3k 4+ p,y = 3l + ¢,z = 3m + r, where
p,q,r € {0,1,—1} and, therefore, 2% + 3® = p + ¢ (mod 9) and 2 + y3 + 23
p? + ¢ + r3(mod9) where —2 < p? +¢® < 2 and -3 < p? + ¢ + 13
3.Thus, 2° + y® = +4(mod9), 2% + y> = £3(mod9) and 23 + y> + 23
+4 (mod 9) impossible.

d) Since 117 : 9 then 2% + 117y° = 5 = 2% = 5(mod9) = 2°
2(mod3) = 23 =8(mod9),

but 5 isn’t congruence to 8 by modulo 9.

Remark.(Just in case).

Since 23 + 43 + 23 = 3zyz+ (z +y + 2)° =3 (x +y + 2) (xy + yz + 2z) then

P+’ +22=2+y+2(mod3).)

HAA -

Problem 2.9
Since

3a = 2°4+2y* = 2%42y* = 0(mod3) <= 2? =9? (mod3) <= |z| = |y| (mod3) =
then

= 0(mod3),y = 0(mod3)
x =0 (mod3),y =0 (mod3) where |o| =|§| =1

Casel. Let = 0(mod 3),y = 0 (mod 3). Then x = 3p,y = 3¢,p,q € Z and,
therefore, 3a = 9p? + 18¢> <= a =3 (p* + 2¢?) .

Note that (n?+ 2m?) (p? +2¢?) = n?p? + 4m2¢® + 2n%q* + 2m?p?

n2p? +4nmpq+4m2q® +2n2q® — Anmpq+2m?p? = (np + 2mq)2 +2(ng — mp)2 )
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Since3:1+2-1thena:3(p2+2q2)=(p+2q)2+2(q—p)2.

Case 2. Let x = 6 (mod 3) ,y = ¢ (mod 3) , that is © = 3p+4,y = 3q+0 where
lo| = |6] = 1.Then 3a = 2% + 22 <= 3a = 3p+0)° +2(3¢+0)° =

9p? + 6pd + 18¢2 + 12q0 + 202 + 6% = 9p? + 6pd + 18¢% + 12q0 + 3 —
a=3p?+6¢%+2(pd +2q0) + 1 = 3p?6% + 6¢%0% + 2 (pd + 2q0) +1 =

p20% + 4¢%0? + 4pgdo + 2 (pd + 2qo) + 1 + 2p*6% — 4pgdo + 2¢%0> =

(p6 + 2q0)*+2 (pd + 2q0)+1+2 (pd — 2q0)* = (p6 + 2q0 + 1)°+2 (pd — 2¢0)° .

Proldlem 20'10 “ c
Let — and — be irredusible fractions for which equation y = 22 + —z + — in

b d b d
b
integer x,y is solvable in integer x,y. Since EC = by — bx? — ax € Z and
ged (¢,d) =1 then b : d, that is b = kd.
. 5 adx adx ax
— — = — = — = — — 1
Since, (y—a2?)d —c 2 o . and ged (a, b) =

ged (a, k) = 1 then x = kt for some integer t.Hence,

9 G c 9,0  akt ¢ 9,0 at+c
= - - =kt + — + = -kt = —.
yx+bx+d<:>y +kd+d<:>y d

Since ged (¢,d) = 1 and at ¢

€ Z yield ged (a,d) = 1 (because otherwice,if

at + c at + c
] €l =

ged (a,d) = p # 1) then
god (¢,p) =p # L.

But ged (¢,d) =1 = ged (¢, p) = 1.That is contradiction.

Thus, we obtain the following necessity condition for irreducible fractions
a

gandgz

C
€l — - €7 <—
p

1. b = kd, for some integer k;

2. ged (a,d) = 1.

Let — and — be irredusible fractions such that b = kd, for some integer k and
ged (a,d) = 1.

Then equation at + ¢ = 0 (mod d) have infinitely many solutions in integer
t because ged (a,d) = 1.

Let ¢t be any such solution.Then for x = kt we have

akt ¢ at + ¢

O Ry oo Ly 2

bt wd T d € 2.

*Problem 2.11(3932 CRUX)
Let z, y be natural solution of equation 2% — 1dzy + 32 — 4z = 0.
Since x = y (mod 2) and

22 —ldzy+y’—dz = 0 <= y>—1day+4922 = 4 (12x2 + :E) — (y— 7:v)2 =22 (12x2 + x)

- rka t
(©1985-2018 Arkady Al 41



Math Olympiads Training- Problems and Solutions

2
—Tx
then 122242 = (y > , that is1222 + x is the perfect square of integer
number.
. y—Tx|\ . e :
Therefore, pair (u,v) = | x, 5 is positive integer solution of equa-

tion 12u? + u = v%. Opposite, let (, z) is positive integer solution of equation
1222 4+ x = 22
Then = and y = 7z & 22 satisfy to equation 22 — 14xy + 3% — 42 = 0.
Solving equation 1222 + z = 22 in natural numbers.

Let k := ged(z,2) and let a = %,b = % then 1222 + 2 = 2? <+
122+1 2z «a
= — = — <>
z x b
b2

ax—bz:() [L‘:ﬁ
a* —12b
{ 1262 —az=—b ab , where a,b

ST 12

Since ged (a2 — 1262, b2) = ged (az, b2) = 1 then x can be integer only if

a® — 12b%| = ged (a® — 1267, %) = 1.

But since a? + 1 for any integer a isn’t divisible by 3 then equation a? —

12b? = —1 <= a? + 1 = 12b* have no integer solutions. Thus, remains only
equation a? — 12b> = 1. Since a? — 12b®> = 1 implies that a,b are relatively
prime then any natural solution (a,b) of Pell equation a? — 12b> = 1 induce
natural solution (z, z) = (b2, ab) of equation 1222 + z = 22 that is

S:={(z,2) | 7,z € Nand 122% + z = 2*} = {(b%,ab) | a,b € N and a® — 12b* = 1}

.("Pell parametrization" of all natural solutions of equation 1222 + x = 22).
Note that (a,b) = (7,2) is smallest natural solution of a* — 12b*> = 1 and,
therefore,

{(a,b) | a,b € N and a® — 12b* = 1} = {(@n,bn)},51

where both a, and b, satisfy to the same recurrence 7,412 — 141,411 +
rn, = 0,n € N with different initial conditions a1 = 7,as = 97,b1 = 2,by =
28.Let 6, := Tb, — 2a,,n € N then §,,0 — 146,41 + 6, = 0,n € N and
01 =0,00=7-28—2-97=2.

Since 6o = 2,69 — 01 > 0 and 0,42 — dpg1 = Opy1 — 9 + 126, then by Math
Induction 6§,, > 0 for any n > 1 and §,,+1 > 6, for any n € N.

Hence 7b% — 2a1b; = 0 and 7b2 — 2a,,b, = b,,0,, > 0 for any n > 1.

So, all pairs (z,y) = (62, T £ 2ab) where (a, b) be any solution of Pell equa-
tion a? — 12b% = 1 in natural numbers, excluding solution, indused by (a,b) =
(2,7) and y = 7b? — 2ab, represent all natural solutions of equation 2% — 14zy +
y? — 4z = 0.

Then ged (z,y) = ged (b%,7b? £ 2ab) = bged (b, 7b + 2a) = bged (b,2a) =
bged (b, 2) = 2b(because all b, are even) and, therefore, ged? (x,y) = 422,

- rka t
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Problem 2.12
So, we have to solve equation 16z + 17y + 21z = 185, x,y,z2 € NU{0}.
Let u := z+y,n := 185 —21z then equation becames 16u+y = n,where u >
y >0 and 0 < z < 8 because 185 — 212 > 0 < 2z < 8.Let t:=8 — z.Then
n=174+21t,0<t <8, z=8—t.Sincey=n—16uthen 0 <y<u < 0<

n—16u <u <— [n—li—7l6} gug[n}.

16
16
Noting that n < 185 — n < 256 <= nJ1r7 > % we conclude that

equation 16u + y = n have integer solution (u,v) such that v > y > 0 iff

16
{n—;} = [ﬂ} , that is iff for ¢ € {0,1,...,8} holds

16
(1)

33+21¢]  [17+21¢
17 o 16 ’

Then for each such ¢ we have n = 17 4+ 21t,u = [%} Y = 16{%} =

u—y,z=8—t.

n+ 16 n
AN [ 17 ] [ﬁ} “yroz
0 17 1 1 1 1 8
1 38 3 2
2 59 4 3
3 80 5 5 5 0 5 5
4 101 6 6 6 5 1 4
5 122 8 7
6 143 9 8
7 164 10 10 10 4 6 1
8 185 11 11 11 9 2 0

Thus, minimal number of boxes provide solution (z,y,z) = (0,1, 8).

Remark.
Intuitively, it is clear that the larger the capacity of the boxes involved in
terms of transportation
for a given volume of cargo, the smaller number of boxes needed.
Hereof, maximal value of z which provide solvability of equation 16x+ 17y +
21z =185
in nonnegative integer x,y at the same time provide mimimal value of cor-
respondent
sum z+y+z. For 2 = 8 we we have 162+17y+21-8 =185 <= 162x+17y =
{ z=0
17 <=
y=1
So, solution (z,y,z) = (0,1,8) provide minimal number of boxes which is
9.
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This intuitive and plausible reasoning leads to the following elegant solution:

Solution 2.
Let ¢t := x4+ y+2.S0, we should minimise ¢ for nonnegative integer x, y, z that
satisfy

16z + 17y + 21z = 185.

Note that 185 — 21z = 162z + 17y > 0 — 185 — 212 > 0 < 2z <
@ <ZE:Z> z < {185} =38
21 —l21]

Also note that 185 = 16x + 17y + 21z = 21t — 4y — b5z = 21t = 185 +
4y 4+ bx > 185 =

185 ez 185 + 20
> — = t>|—
b= g { 21

} = 9.From the other hand for ¢t = 9 we obtain

system of equations

162 4+ 17y + 21z = 185 y+52=185—-16(x +y+ 2)
(2) { T+y+2=9 (:>{ T+y+2=9
y+5z=185—-16-9 — y+ 5z =141
r+y+z2=9 r=9—(y+2)

Sincex >0 < y+z<9and y=41—>5zthen (41 —-52)+2<9 «<—
4z > 32 < z > 8.
Thus, 8 < 2<8 <= z2=8 = y=1 = z=0.

Problem 2.13

Since z = 10n — 5z — 2y and z > 0 then number of non-negative integer
solutions of equation 5x + 2y + z = 10n equal to the number of non-negative
integer solutions of inequality bz + 2y < 10n.

10n — 5z 0<z<2n
< Sz <
Then { be —; 2y>7010n — Osys { 2 } = 0<y< 5(2n — x)
Y= 0<10n—5z,2 >0 =Y= 2
_ . (2n — x)
Since for each z € {0, 1, ..., 2n} number of pairs (z,y) equal to 5 +

1 then number of non-negative integer solutions of equation bz + 2y + z =
10n equal to the sum

3 (P2 ) wanrs 3 (%] o 32 (5] o)

x=0 k=0 k=0
2n k 2n 2n k
2n+1+ Y [}+22k:2n+1+2n(2n+1)+2 [}:
k=0 2 k=0 k=0 2
) n 2 2i—1 ) LA
n*+2n+1+ Y 5 +3 5 =4dn"+2n+14 > i+ > (i—-1) =
=1 i=1 =1 i=1
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n

4n2+2n+1+Z(2i—1):4n2+2n+1+2(ig—(i—l)z):

i=1 i=1

2+ 2n+1+n2=5n2+2n+1.

3. Integer and fractional parts.

Problem 3.1
By Power Mean Inequality we have

<\Sﬁ+\:ﬂ> <2t (\75+€’/1)3<24.

2 2

We try to prove that (\‘754— \3/1)3 > 23. Since (\Sﬁ—i— 3/11)3 = 6+6 (\3/54— \3/1) then
(V2+ V3 > 23 « 6(V2+ VE) > 17 «— 12 2+12 ¥4 > 34.

Note that 12 ¥/2 = 3+v/27 = 3¥/128 > 37/125 = 15. Thus remains to prove
12 V/4 > 19 < 33.28 > 193, We have 19% = (20 — 1) 3 = 8000—1200+60—1 =
6859 and 3% -28 =9-256-3=19-768 = 7680177 768 = 6912 > 6859.

Another proof of inequality 2+ 4> 5 :

Let  := /24 /4 then (\3/54— \3/41)3 = 6+6 (\?/54— \3/41) < 23 = 62+6. So,
x > 2 is root of cubic equation z3 — 62 — 6 = 0. Let p (z) := 2® — 62 — 6.

Note that p(z) T [V/2,00).Indeed, let v/2 < 21 < x5.Then p (x2) — p (v1) =
23—23—6 (x3 — 21) = (z2 — x1) (23 + z221 + 2} — 6) > 0,because z? > 2, zow1 >

17 173 17

2,22 > 2. Also, note then p<6> =5 - 23 < 0. Since 3 > v/2 and

17 17
p(z) T [V2,00) then = > r (From supposition v2 < 2 < z < 5 follows
17
O0=p(z)<p (6) ,2that is the contradiction).

Problem-3.2
a) We have

(Vo + VA T+va+9)] = [n+3+2Vnlnr D +2vn(n+2) +20/(n+ 1) (n+2)] =

3n+3+ [2\/n(n—|—1)+2\/n(n+2)+2\/(n—|—1)(n+2)}.

Since by 2-AM-GM Inequality 24/n (n + 1) < n+(n+1) = 2n+1,2y/n(n+2) <
n+(n+2)=2n+2,2y/(n+1)(n+2) < (n+1)+ (n+2) =2n+3 (we wrote

< instead < because condition of equality in AM-GM Inequality is not
fulfilled) we obtain
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2vn(n+1)+2yn(n+2)+2/(n+1)(n+2) <6n+6

(Or, since 24/n (n + 1) = VAn2 +4n < VAn2 + dn+ 1 = 2n+1,2\/n(n +2) =
VaAnZ +8n < VAn2 +8n +4 =2n+land 2¢/(n + 1) (n +2) = V4n2 + 6n + 8 <
VAn? +12n + 9 = 2n+3 then 2¢/n(n+ 1)+2/n(n +2)+2y/(n+ 1) (n + 2) <
6n + 6)

We will find lower bound for 21/ (n + 1)+2y/n (n + 2)+2+/(n + 1) (n + 2) using
3-AM-GM Inequality again, namely,

VT DAVt D+t D (12 >3y Vam D) Vot 2) Vit D (1 2) =

3/nn+1)-nn+2)-(n+1)(n+2)=33/nn+1)(n+2).

Note that n(n+1)(n+2) = n® + 3n% + 2n > (n+5/6)° for any n >
2. Indeed,

2
3 9 3. N n 125 n 125
2n — = - —=—-— == -1)—-—>
n°>+3n°+2n—(n+5/6) 7 " 13 316~ 12 (6n —1) 516 =
n 125 11 125 11 125
—6-2-1)——>—-2——=———>0.
12( ) 216 — 12 216 6 216>
Hence,
2vn(n+1)+2¢/nn+2)+2y/(n+1)(n+2)>2-2(n+5/6) =6n+5.
Since

6n+5<2yn(n+1)+2¢/n(n+2)+2y/(n+1)(n+2) < 6n+6

then

[2\/n(n+1)+2¢n(n+2)+2\/(n+1)(n+2)} = 6n+5

and, therefore,

(Va4 VAt T+vn+2)’| =on+8.

b) Since* [Vx] = [ [m]} then, using a) we obtain

Vit i T4 vie 2] = | (Vi Vi T v g) -
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W[wmmwmﬂ ~ [Von ).

Appendiz.

Let p:=[v] thenp>0and p< 2 <p+1 < p* <z < (p+1)2.Since
p? is integer lower bound for x and [z] is biggest integer lower bound for z then
P<l<z<p+1)’ = pP<@l<@p+1)? = p< V] <p+1 —

Val]=»

Problem 3.3 )
Obviously that 2 # 0 and easy to see that = ¢ Z because otherwice {} =1,
x
1
i.e. contradiction. Denoting n := [z] 4+ [] + 1 we obtain that if x is solution
x

1
of equation {z} + {} = 1 then = ¢ Z and for some integer n this z satisfy
x

1 1 1
equation .+ — = n. Moreover, since |z| # 1 then |n| = |z + ‘ = |z|+ 2l > 2.
x x x
Let now n is integer such that |n| > 2 then equation © + — = n <<=
x
n+vn?—4
2> —nx + 1 = 0 have two irrational solutions z = % or r =
n—+vn?—4

5 = and for each we have

{x}+{i} {2} 4 {n—a) = {0} + {2} = 1.

1
Thus all solution of equation {z} + {} = 1 can be represented in form
x

n+vn? —4

5 , where n € Z and |n| > 2.

O

Problem 3.4.

Let S, := {(a,b) | a,b € N\ {1} and a® <n}. Note that a® <n <= a <
VYn <= a<[¥Yn].Foranyb € {2,3,...,n} let Ay :={a | a € N\ {1} and a < [{/n]}. Then
Sn = U Ap x {b} and, therefore, |S,| = > [Ap] = > ([¥n] — 1) = > [¥/n] —

b=2 b=2 = =

(n—1).

Note that a® < n <= b < log,n <= b < [log,n]. For any a €
{2,3,...,n} let B, := {b|be N\ {1} and b < [log,n]}.Then S, = |J {a} x

B, and, therefore, |S,,| = Z; |B.| = bzijz (log,n] —1) = bZZ:Z [[log, n]]—(n — 1) .Thus,
3 [llog, ]l = (n = 1) = 3 [Y] = (n=1) <= 3 flog, n] = 3 [/
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*Problem 3.5 (CRUX #3095)
Consider two cases:

b b
1. Let [C+p ] < a, then p {c—i—p} < pa and we have inequality
q
b b b
{c+p}<c+p <:>c+pb—q{c+p}>0.
q q q

Thus

+ pb
¢c+pa+pb—(p+q) {cqp}

ctplat+bd) {c—&—pb} _
p+q q

(el (o)

p+q

pPtq

c+pla+b)
pP+q

c—I—pb} <

b
So, we obtain inequality [c—l—p } < , which implies [
q

22522)

2. Let {Hpb

} > a, then ¢+ pb— ga > 0 and consequently

[C-l—p(a-l-b)] _ {c+pb—qa+a(p+Q)] = a+ [c—i—pb—qa} > q.
p+q ptq pa

Problem 3.6
a. Let p:= [n\/ﬂ then p < nv2 < p+ 1( nV2 # p because /2 ¢ Q) and

2 _ .2 2 _ 2
_2n—p 2n® —p S 1

= >
n\/§+p V2 T 2nv2

because p < nv2 = p? < 2n? <= 1< 2n? —p?

b. We will consider now natural n such that 2n? — 1 be a perfect square
(for example n = 1,5) that is we will find all pairs (n,p) of natural numbers
such that 2n? — p? = 1.

Let (n,p) be such pair. Then 2n% = p? +1 < (p+ 1)2 and, therefore,

P<m?i<(p+1)P <= p<nV2<p+1 = [nv2] = p.

Also, since 1 = (v2+1)* (V2= 1) = (3+2v2) (3 - 2v/2) then 1 = 2n%—
p* = (nv2+p) (02 —p) = (V2 +p) (3+2v2) (nv2 —p) (3 -2v2) = ((3n +2p) V2 +4n + 3p) ((3n + 2
2 (3n +2p)° — (4n + 3p)>.

Thus, (3n + 2p,4n + 3p) is natural solution of equation 22? — y? = 1 and
starting from solution (1, 1) we obtain infinite sequence (n1,p1), (n2,p2) , ..., (Mg, Pk) , ...0f
natural solutions of equation 222 — y? = 1 defined recursively as follows

{n\/i}:n 2—0p
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N1 = 3Nk + 2pg

1 ke Nandn, =p; = 1.
(1) {pk+1=4nk+3pk ,k € Nandn; =p;

. n . n 1
Since ng41 > 3np <= 3;:; > 37,16 € N and then 3;1; > 3—i =3 —

Ngt1 > 3 keN = n, >3l keN. (Similarly pg > 3’“’1).

1

and

Recall that = 2| . Th 2t = —pp = —————
eCca. al Pi [nkﬂ €en {nk\f} nk\f Pk nk\/i+pk

1 w2 1 _
neV24pr 2pV2 2nv/2 (ngV2 + pi) znkﬁ(nk\/ierk)z

1 1 1 1 1
= . < . .
2mp/2 (3k—1\/§ + 3k—1)2 2npV/2  32(k=1) (Qﬁ + 3) 2npy/2 31

Since for any positive real € we can find & such that 32h 1 (for example

1
take any k > logg 3—) then for this k we have
€

1 1 - 1 { \/5} < 1+e¢
— “E <= n _
neV2+pr 2npV2  2npV2 g 2nV/2
Remark.
Note that since 2px+1 = 8ng + 6px and 2p; = ng41 — 3ng we have ngyo —

g1 = 8ng + 3 (N1 — 3ng) < Ngio — 6ngrr +np = 0,k € Nand ny =
1+1/32%k-1

2
1,n9 = 5.Also note that 2n2 — [n;v/2]” = 1and {n;v2} <
2 2 kﬂ { k\[} S
Problem 3.7

Let p := [/n]. Since n € N
p<¥n<p+l <= pt<n<@+1)!

isn’t forth degree of natural number then

and

n — p* 1 1

>
(V) = ¥n-p= Vnd +pVn2 +p2yn+pd W—kpﬁﬁ—p?{‘/ﬁ—&—p?’ 4+/n3
because V/n? + pv/n? +p2 Yn+p® < Vi + /n- Vn?+ (Vn)® Y+ (Yn)’ .
%

*Problem -3.8. (J289, MR) (Identity with integer parts).

1 1
Let n := <n< <D=
1—a 1—a n
— -1 1
n < < and, therefore, w < a }
n n 1-—
1 21 1 n? —
M — r +1<all+|— +1<n+1Slnce + =
n+1 n 1—a
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1
n — — + 1 > n for any natural n then
n

S N N O YA |
o o (1+ [ ]} 1= ).

Or, such variant:

1
Prove that [(1 - ) (1+ [m])} + 1 = [z] for any real z > 1. Let n :=
x

1 1
[] then1<n<z<n+l = —— < =<
n+l =z
and, therefore,

Wl)ﬂﬂ < (1_915) (140 <2t ”2n_l+1§ <1—i> (1+ [2])+1 < n+1.

2

1
+1=n— =41 > n for any natural n then
n n

. n
Since

n < <1—;> 1+[z)+l<n+l < [(1—916) (1+[9c})}+1:n.

xT

Thus, [(1 - 1) (1+ [x])} 1= a].

Problem 3.9.
n n

Let a,, = (m +vm? — 1) + (m —vm? — 1) then for a,, we have recur-
rence

Gp+1 — 2may, + a,—1 = 0 and initial conditions ag = 2,a; = 2m.

So, a,, is integer and even for all n and since, m — vm? —1 € (0,1) then

(m —+vm? — l)n € (0,1) and sequently 1 — (m — vm? — l)n €(0,1).

Therefore in representation

(m+vm? — 1)” =a,—(m—vm? - l)n = (an — 1)+(1 —(m—-vm?-1 ")

{(m—i— vVm? — 1)“J =a,—1 and {(m—i— vVm? — 1)“} =1—(m—vm? — l)n.

Thus, {(m +vm?2 — 1)nJ is odd for all n.

% Poblem 3.10 (W 16, J.Wildt IMO 2017)
k

For given natural n > 1 let I, :== {1,2,...,n} and let f (k) := [} for any
n

kel,.
Then we should determine |f (I,)]-
Consider two cases.
Casel. n is even, that is n = 2m.

Lemma.
For any k € I,,, holds inequality f (k+1)— f (k) < 1.

(©1985-2018 Arkady Alt 50



Math Olympiads Training- Problems and Solutions

Proof. 2 )
2 1
First we consider k € I,,,—1.Let 1 <k <m—1then f(k+1) = [—5—24-]
m
k% +2m
d1 k)= |—|.
and 1 7 () = | =2
Note that k£ < m — 1 yields
E2+2(m—-1)+1 k*+2m—1 k* 4+ 2m
< - < - )
f(k+1)_[ 2m 2m - 2m L+ £ (k)
Also for k = m we have
m2+2m+1
m?+2m +1 2
1 =l = _— =
I e 2
2
{m +2m+1} m+2+[1] -
m m
2 2 * [2} + f(m)
Corollary.
m
F(Iy) = {0,1,2,..., [?]}
Proof.
. . . (k+1)°
Note that f (k) isn’t decreasing, that is f(k+1)— f(k) = |——| —
n
k—Q > 0. Also, f(m)= m—z = [m} and f (1) = L = 0. Suppose that
n| = ’ T lom| L2 ~|am| T PP

there is i € 1,5 for which £~ (i) = @.Obvious that 1 < i < g] Let k=
{k|kel,and f(k) <i}. Then f (k) < i < f(ki+1) = f(ki+1)—
f (k) > 1,that is contradiction to Lemma.ll

Now note that f (k) is strictly increasing in k € {m + 1,m +2,..,2m}. In-
deed, since for any k € I,, we have

B (m + k)? _[m®+2mk+k*] m? + k2
fm+k) = 2m B 2m =kt 2m
then
2 2 2 7.2
Fm+(k+1) =k+lt w k+{m2;k } = f(m+k) for any k € Ipn_y

- rka t
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Hence, |f (Iam\Im)| = m and since |f (I,,)| = {%} + 1 then |f (Iom)] =

m 1 3m + 2
m + [ 2} +1= [ 3 } .
Case 2. n is odd, that is n = 2m + 1.
Then as above we will prove divide this case on two parts.
First we consider f on I,41.
For any k € I,,, we have

B2 +2k+1 E2+2m+1 k2
= < = =
Jk+D) [ 2m +1 } [ 2m +1 } 1+{2m+1] L+ fk+1)
and
m2+2m+1 m2 1
f(m+1)_{2m+1}_1+{2m+1]’f(l)_{2m+1]_0'

By the same way as above, using inequality f (k+ 1) < f(k) + 1, can be
2

proved that for any 0 < i <1+ | there is preimage in I, 41.
2m +1
m2
S I, =1 .
o0 If ()l = 14+ |57

Remains consider behavior of f on Iopi1\Imt1 ={m+1+k|kel, }.
For any k € I,,, we have

K2+ k+ (m+1)°
2m +1

(m+1)2+2(m+1)k+k2
2m +1

flm+1+k) = = k+

and then

k24 k+ (m+1)°
2m +1

(k+1%+(k+1)+ (m+1)*

>
Flm+14 (k+1)) > k+1+ S

> k4 =fm+1+k).

Since f (k) is strictly increasing in k € Inp41\Lm+1 then | f (Lom+1\dm+1)| =

m.Thus,
m?2 3m?+m
I - 1 =14 ==
|f Tame)] = m+ +[mﬂ} +[2m+1]
1+[3;” if n = 2m
So, |f (In)| = 3m? +3m+1

- rka t
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3 6 3
For n = 2m we have |f(In)|:1+[ m} :1+{ m} :14_{”]_
For n = 2m + 1 we have

12m? + 12m + 4

3m? +3m + 1 2m 41
I,)| =1 ——| =1 =
1 (1) +[ 2m+1 ] * 4

9 1

w {3(2m+1)+2 +J 3(2m+1) 3n
el 2m+1 |y = R R .
+ 4 * 4 4{ 4 } 4{4}

4
Problem 3.11(U182)

So. (1l =1+ | 7]

1
Let z € (2, 1> Define sequence (zn),,, as follows:

ro: =z and x, =2z, 1 — 1,n > 1.

1 1
Then for any = € (2, 1> there is n such that z,, € { 2} Indeed, from
Tpt1 = 2¢, — 1 <= xp41 — 1 =2(z, — 1) follows z,, — (zg—1) =
Tp=1-2"(1—-2a).
Since
1
1 1 <
0<z,<- <= 0<1-2"(1-2)< - <= 1 7 =
2 2 < 2n+1
1—=x

1 1
lOgQE—ISRSIOgQ?

1
then |log, 1J is such n, (because for any real a by definition of integer
—x

part of @ we have |a] <a < |a|+1 < a—-1< |a] <a).
Hence, for such n we obtain f(x) = f(zg) = fQ2zo—1) = f(z1) =

f@2x1—1) = f(z2) = ... = f(xn_1) = f2xp-1—1) = f(x,) = c¢. Thus
f(x) = ¢ for any = € [0,1) and, since by condition f (z) is continuous on
[0,1], then f (1) = lir{{ f(x)= lir{{ c=c.

¢

O

4. Equations, systems of equations.
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* Problem 4.1(Generalization of M703* Kvant)
Let a := g+ r,b := r+ p,c := p+ ¢.Since p,q,r > 0 then a,b, c satisfy
to triangle inequalities and, therefore, numbers a,b,c determiner a triangle
ABC with sidelengths a = BC,b = CA,c = AB. Note that z,y,z have
the same sign and since zy+yz—+zx and (¢+7)(x+ 1/z) = (r+p)(y+ 1/y) =
(p+q) (z + 1/2) are invariant with respect to transformation (z,y, z) — (—z, —y, —z) we
further assume that z,y,x > 0.
Let o :=2tan" 'z, 8 :=2tan"'y,~ := 2tan~! 2. Since z,y, z > 0 then

2 2 2
a,B,7y€ (0,7m), a+1l/x = — y+1/y = ——, 241/z2 = —, zytyztze =1 <
S si sin y

ina’ npB’
(1) tan%tang—&—tangtan%—i—tan%tan%:1

and
(g+r)(x+1/z)=(r+p) (y+1/y)=(p+q) (2 +1/2)

can be rewritten in the form

a b c

(2) -

sina  sinfg  sinvy

Now we will pay attention to the correlation (1).

We have (1) < tan% (tanﬁ + tan ’2y> =1- tangtan%. Note that

2
B Y . . . o
tan 5 tan 5 # 1 because otherwise since /3, € (0,7) we obtain tan 7= 0 —
a = 0 (contradiction with « > 0). Thus,

p Y
T_ay_ tmgttamy T_ay_ (B
(1) < tan = <= tan = tan + =
2 2 B y 2 2 2 2
1 — tan — tan —
2 2
T o [ v T o f v T
———==4 - = « = (because — — —, = —6(0,7).
22772 thty=m( 272723 2))

2
Since «, 8,7 € (0,7) and o + 8 + v = 7 then «,3,7 can be consid-
ered as angles of some triangle with correspondent sidelengths sin «, sin 3, siny
which due to (2) is similar to triangle ABC.Hence, « = A, 3 = B,y = C and,
B C

B C A
therefore, (z,y,2) = | tan 2 tan > tan 2) and (z,y,2) = (— tan 20 tan 50 tan 2) all

solutions of the system

{ a(z+1/z)=by+1/y) =c(z+1/z)
Ty +yz+zex=1
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A C b
It remains only to express tan 5 tan 5 tan 5 viap,q,r. Let s := % =
p+ q+ r then
A —b)(s—
oA fe-he-o [
2 s—a s(s—a) p(p+q+r)
and, cyclic,

¢ B D _ Dq
an—=,/——— tanC =, | ———.
2 Valp+aq+r) Vrp+q+r)
1 qr [rp [pg . .
So, (z,y,2) =t —— —, ./ —,1/— | all solutions of original sys-
(2,9, 2) WFHTQ/]),/(]\/T ginal sy

tem.

Problem 4.2
First note that z,y, z # 41 ( if, for example, 22 = 1 then first equation give
us ¢ = 0).

2z
Yy=-—"—"—"53
2z + 2%y =y 1 §yx2
Then 2 +ylr =2 = z= T 5
2224 2Pr =2 Ezy
T2

Let o := tan™! (z) then x = tan«, where a € (—7n/2,7m/2). Hence, y =
tan2a, z = tan4a and third equation becomes tana = tan8a <= 8a =

Y
< = <= |k
5 = Ikl

),k; € {-3,-2,-1,0,1,2,3}

IN

a+kr < Ta=kr < a:k;,wherekeZand‘k;T

km 2km 4km

3. Thus = | tan —, tan —, tan —

us, (z,y,%) an -, tan ——, tan —
represent all solutions of the system.

Problem 4.3
y=f(x)
Let f (z) := x — sinz.Then system becomes z=f(y)
= f(2)

Note that function f(x) increasing in R.Indeed, let x; < z and 0 <

xo — a1 < 7 then f(x3) — f(x1) = 2 —sinxy — (1 —sinzy) = 29 — 1 —

. . To+2x1 , T2 — 21 . Ta— 1
(sinzg — sinxy) = zo—x1 —2COS 5 sin 5 > x9—x;—2sin

0 because sint <tfor 0 <t< g

Assume that © # y let it be x < y then f(z) < f(y) <= y< 2z =
fly) < f(z2) <= z <z Thus, z <y < z < z that is the contradiction.

Ify<azthen f(y) < f(z) <= z2<y = f(z)<fly) <= <2z =
f(z) < f(2) < y < x,that is the contradiction again. So, = y. Similarly
we get y = z and, therefore, t = y = z =t where ¢ is any solution of equation
sint = 0,that is t = nmw,n € Z.
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Problem 4.4.
First we will prove, using Math Induction, that for any real z1, o, ..., x,, holds
inequality

(1) n(zi+23+..+2) > (1 T+ 2o+ ot 3,)?

and equality occurs iff x1 =z = ... = x,,.
1. Base of Math Induction.
2 (23 +23) > (z1+ 23)° <= (@1 —x2)”> > 0 and equality occurs iff
1 = X3.
2. Step of Math Iduction.
Since (z1 + 2 + ... + 2n)° <7 (23 + a3+ ...+ 22) by supposition of Math
Induction then

(14 T+ oo+ T+ Tpg1) = (@1 + T2+ o+ 20) 28000 (T F T2+ e+ xn) 22 <

n (x4 23+ .+ @) 42241 (@1 + 22+ o @)+ (20 g+ 2+ (g 2d) et (2l ) =

(n+1) (z?+ 23+ ...+ 22 +22,,) because 2z, 117; < 22, +2?,i=1,2,..,n.
Equality occurs by supposition of Math Induction iff z; = 2o = ... = x,, and
Tpt1 = x40 =1,2,...,n by base of Math Induction.

Coming back to the system, since n (z3 + 23 + ... + 22) = (21 + T2 + ... + 2,)°

we can conclude that z1 =22 = ... = 2, = —.
n
Problem 4.5. ) ) ) ) ) )
Tty +z¢=1 +y =1-z2
a)Wehave{ r+y+az=1+a {x+y=1—|—a—az

Since (z—y)° = 2 (2 +y?) — (z+7y) = 2(1-2%) — (14+a—az)’ =
2(1-2%) —(1+a—az)® = —(a®>+2)22 +2a(a+1)z — a®> — 2a + 1 then
—(a®+2)22+2a(a+1)z—a’—-2a+1>0 < (a®+2)22—2a(a+1)z+
a’+2a—1 < 0, where latter inequality solvable iff discriminant of quadratic tri-
nomial isn’t negative, that is iff a2 (a + 1)* — (a>+2) (a®>+2a—1)=2—4a >
0 < a<1/2.

Thus, for @ > 1/2 the system is solvable only if a = 1/2 and in that case

we get for z inequality ((1/2)2 + 2) 22—3/22+(1/2)> <0 — i (32—1)* <
0 <= z=1/3.
For a = 1/2 and such z the system becomes
2? +y* =8/9
{ z+y=4/3
So solution is (z,y, z) = (2/3,2/3,1/3).

= r=y=2/3.

b) Solution 1.
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Let x,y,z be solution of the system. Then z,y,z can be represented as
solutions of the cubic equation

(u—x)(u—y) (u—2)=0 < W—(v+y+2)u’+(xy + yz + 22) u—ayz = 0 <>

(1) w®—au?+ (zy +yz+22)u —ayz = 0.

1 1 1
Since —+—+4- = = <= a(axy + yz + 2x) = xyz then equation (1) becomes
T Yy z a

ud —au® + (zy +yz+20)u—a(zy +yz+220) =0 —

(ﬂcy+mz+yz+u2)(u—a):0.

Since u € {x,y, 2} then in particular for u = x we have

(zy+zz+yz+2°) (z—a) =0 <

T=a
(z—a)(z+2)(z+y) =0 <= | z2=—x
y=-a
y+z=0
Consider case = a.Then ¢ 1 n 1 0 = F=Y where y € R\ {0} is
y oz
any. If z = —x then y = a and if y = —z then z = a.So, we get solutions

(z,9,2) = (a,t,—t),t € R\ {0}.And by symmetry we have also (x,y,z) =
(ta a, 7t) ) (t7 7ta a) ) te R\ {0} .

Solution 2.

T+y+z=a rTt+y=a—=z rt+y=a—=z
1 1 1 — 1 1 1 1 «— zZ—a z—a_o —
r Yy z a r Yy a =z Ty az
z+y=0
rT+y=a—=z zZ=a
rt+y=a—z
z=a r=a
z=a = cty—a—z -
zy+az=0 vy= vy=
TY = —az y=a
Tr=—z

Problem 4.6 (95-Met. Rec.)
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We have
r+y+z=2 r+y=2-—=z2 T+y=2-=2
= 2
xy+yz+zr=1 xy=1-—z(y+2) zy=(z—-1)

Since (2 +y)° —4zy = (z — y)” then obtained Vieta’s System have solutions
iff (2—2)°—4(2-1)>>0 < 2(32—4) <0 < z€[0,4/3] and, due to
symmetry, z,y € [0,4/3] as well.

Problem 4.7 (96-Met. Rec.)
Solution.
Note that

2(cosx — cosy) = cos2zcosy < 2cosz =cosy(2+cos2z) <

2cosx

2cosx =cosy (1+2cos?x) < cosy= —— .
y( * ) y 14+ 2cos?zx

2|cos z| 1

2
— < 2 -1 >0 <=
1+2cos?2z — 2 (\[‘COSM ) -

Also note that

1 2 2v2
|cos x|, |cosyl, |cos z| < —=.Since cosy = Lﬂ = V2cosy = &332 then,
V2 1+2cos®w 1+ (V2cosz)
2t
denoting, u := \/icoszc,v = \/icosy,w = \/icosz and f(t) = T2 can

rewrite original system in the form

f(w)
f(v) , whereu,v,we[-1,1].
f

(w)
Note that f(¢) increasing in [—1, 1] .Indeed, for —1 < ¢; < t2 < 1 we have

(1)

22 e
I

21, 21 2(ty —t1) (1 — t1to)

f(t2)_f(t1):1+t§_1+t%: E+1)(E+1) >0

because t1t2 < 1.Since f (¢) increasing in [—1,1] then u,v,w can be solution
of (1) if u = v = w. Indeed, if we assume that v # u then in case u < v we
obtain f(u) < f(v) <= v<w = f(v) < f(w) < w < u and,
therefore, u < v < w < u,that is contradiction. If u > v then f (u) > f (v) <=
v>w = f(v)> f(w) <= w > u and, therefore, u > v > w > wu ,that is
contradiction again. So, u = v = w = t, where t = 0 is only solution of equation
f(t)=0.Thus, cosx =cosy =cosz=0 <= z,y,2€ {n/2+nw |neZ}.

5. Functional equations and inequalities
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Problem 5.1(97-Met. Rec.)
a) Note that f (2?) — ( f@)?>1/4 =

f@®) = f@)21/4- f@+( @) < [@7) - fl@)=(f@@)-1/2)°.

Let = 0 then
F02) = £(0)>(f(0)=1/2)% <= 0> (f(0)—1/2)* — [(0)=1/2;
Let « = 1 then
FO) = F)2(F)—1/2)2 < 0> (f(1)-1/2)° <= f(1)=1/2
Thus, f(1)= f(0) and that contradict to claim
T1# 32 = f(z1) # f(22).

So, there is no functions that satisfy to conditions of the problem.

b) Let x =y =0. Then f(0+0) < f(0)+ f(0) < 0< f(0). From the
other hand since f (z) < z for any = € R we have f (0) < 0. Hence, f (0) = 0.By
replacing y in inequality f (z +y) < f (z) + f (y) with —z we obtain

FO<f@)+f(-z) <= 0< f(z)+f(-2) =

—f@) < f(-a) <o = —f(@) < -2 < 2% [(2)

and since f (z) < z then f (z) = x.

Problem 5.2 (99-Met. Rec.)
Note that equation f (z + f (x)) = f () have sence only if

z+f(@) €01 &= —z<f@)<l-z = —(2+f(2) < flz+[f(2) <1-(z+ () —

—f@) < f@ <17 @) = 5 <f@)< 1;“””
,g < f(z) < —— and so on....

(©1985-2018 Arkady Alt 99



Math Olympiads Training- Problems and Solutions

1—=x

For any natural n, assuming _Z <f(x)< for any x € [0,1], and by

replacing  with « + f (z) € [0,1] we obtain

,Lf(x)gf(erf(m))SM —
2O pay PO <

1—
Thus, by Math Induction, inequality “Ie flx) < 33730 € [0,1] holds
n

for any natural n.Hence, lim (ff) < lim f(z) < lim — 0<

n—oo n -

f(2) <0 = f(x)=0. H’O T
Problem 5.3(100-Met. Rec.)
Note that
f@) f)—ay = f@)+f(y)-1 < [f@)fy)—f@)-fy+l=2y < (f(2) -1 (f () - 1) ==y

Let y =1. Then (f(z)—1)(f(1)—1) =z for any = € R. In particular for
x = 1 we obtain

(fH-1D%? =1 f)—-1=1 - F1)y=2

fH-1=-1 Fm=o
If f(1) =2 then (f(z)—1)(f(1)—1) = z yields f(z) -1 =2 <+~
fla) =t
f(I)ff(1)=2then (f(z)=1)(f(1)—=1) =z yields (f(z) - 1) (1) =2 =
z)=1-—=z.

Thus, functions f () = x+1 and f (z) = 1 —z are all solutions of functional
equation of the problem.

Remark.

Continuity requirement in the problem is unnecessary.

Problem5.4 (101-Met. Rec.)

x
By replacing in equation z with — we obtain that
n

T

@ =f(S) e = r@=s(5)+2

for any real x. Then
1@ -4(E)+E = @35
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Hence,
st () = Gt () <= 1@ =5 () s

1
And again by replacing x in f () = —f (f) +2 with % we obtain
n’ \n n n

G =t )+

Hence,

oot () = 1 ()« £+ 5 (B () + )

f@) =

n3

(n3)+ +—+—ands00n

1
For any k € N assuming that f (z) = ﬁf (%) + Z %
i=1

1
Then by replacing z in f (z) = —f (E) + T with ik we obtain
n° \n n n

T\ 1 T T 1 TN\ 1 x T
£(r) = ot (o) + s = o () = e () + e

and, therefore,

fl@)+ %f (%) - nl ( ) + Z n2i—1 nk1+1f (n’il) + n;lf*l —

1 k+1
f @)= Wf(n,;”’il) =

Thus, by Math Induction f (z) = — f ( )—|— Z 7 for any k € N.Then,
n
1 1
kox P 2h+1 nx 1 x
. . _ . n n _ _
since leH;O ;::1 T xlen;O ) T =21 and hm k+1f (W) —
n2

0 ( hm f( k+1) ( n;‘*‘l) = f(0) (due continuity of f in z = 0)

nx
and kh_)n;@ nk“ 0) we obtain that f (z) = 1
Remark.

And again Continuity requirement in the problem is unnecessary. Suffice
claim that f is boundeed in some neighborhood of 0.

Problem 5.5(14-Met. Rec.)

- rka t
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Suppose that there is function continuous on R such that f (z + 1) (f (z) + 1)+
1 =0. First not that f (z+ 1) (f(x) +1)+1 =0 yields f (z) # —1 for any z €
R because otherwise if f (zg) = 0 for some xo then we get f(xg+ 1) (—=1+1)+
1 =0 <= 1 = 0. Furtermore, f(x) # 0 for any x € R because other-
wise if f (z¢) = —1 for some xy then we obtain f(zg+1)(0+1)+1=0 <
f (zo + 1) = —1 and that contradict to previous conclusion. Hence, since f () is
continuous on R then f () preserve sign on R.

From the other hand since

1 1 1 1
r+1)=————,x€Rthen f(x +2) = — =—
A ) flx)+1 A ) flx+1)+1 1 1 f ()
flz)+1
1
If f(z) > 0 for all z € R then since f(z+2) = -1 — e < 0 we get
x
contradiction. If f(x) < 0 for all x € R then in the case —1 < f(z) < 0
we have f(z+2) = -1 — o) > 0, that is contradiction again; In the case
x
1
z) < —1 we obtain f (x +1) = ————— > 0—contradiction.
Fla) <~ we obtain f (a4 1) = ~ 5y

Problem 5.6(15-Met.Rec.)
For given n € N any natural a can be uniquely represented in the form*

a=k(n+1)+r, where ke NU{0},r € {1,2,...,n+ 1}

Let a € Nbe any. If a >n+2then k> 1 and f(a) = 1
fk(n+1)+r—1+1). Applying f(m+ k)= f(mk —n) form=4k(n+1)+
r — 1,k =1 we obtain

fl@=f((kn+)+r—1)-1-n)=f(k(n+1)+r—1-n)=

flEkln+ ) +r—1-n)=f((k—1)(n+1)+r).
Thus, ifa >n+2 < k > 1 then
F@=fla-(m+1)==fla—kn+1)=f0).

Let a € {1,2,...,n+ 1} then k = 0 and a = r.We will prove that f(r) =
f (@) for any r € {1 2,..,n+ 1} .Since r > 1 then by replacing k¥ € N in
fk(n+1)+r)=f(r) w1th r we obtain f (r(n+ 1) 4+ r) = f (r) and applying
fm+k)=f(mk—n) form=r(n+1),k=r weget

fO)=frn+)+r)=f*n+1)—n)=Ff(r*(n+1)—n—-1+1) =

(=1 m+1)+1)=f(1).

- rka t
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*Remark.

If a,b € N then there is unique pair (k, r) of integers such that a = kb+r and
1 <7 < b.Indeed, by Representation Theorem (division with remainder) there
are unique integer number p, p such that a = pb+p and 0 < p < b. If p # 0 then
r:=p and k == p; If p =0thena =pb < a = (p—1)b+ b and
k:=p—1,r:=b.

We will prove uniqueness.

Let { C;;ibg_g and { al_gkilbggl then kb +r = kb +r1 —
blk—ki| = |r—ry|.Since 1 —b < r—ry < b—1 then |r—ry| < b.Hence,
blk—ki|<b = |k—k| <1l <= k=k = r=r.

*Problem 5.7(U182)
1
Let z € (2, 1) Define sequence (2y,),,5, as follows:

ro: =z and x, =2z,_1 — 1,n > 1.
1

1
Then for any = € (2, 1> there is n such that z, € {0, 2} . Indeed, from

Tnt1 =22, — 1 =
Tpe1—1=2(x, — 1) follows z,—1 =2" (29— 1) <= x, =1-2"(1—1x).

— 1_1_”5 —

1 1
SinceOangi = 0§1—2"(1—x)§§

1 1 1
1Og2 m -1 <n< 10g2 m then \\10g2 HJ

is such n, (because for any real a by definition of integer part of a we have
a] <a<la]+1 < a—-1< |a] < a). Hence, for such n we obtain
f@=f(x)=fQao—1)=f(x1)=f2x1—-1)=f(z2)=... = f (xp_1) =
f@xp_1—1)=f(x,) =c

Thus f (z) = ¢ for any = € [0,1) and, since by condition f (x) is continuous
on [0,1], then f(1)= lim f(z)= lim c=c

r—1—

r—1—

6. Recurrences.

Problem 6.1( 4-Met. Rec.)

2
33 +pand

Let (z,y) be pair of two coprime natural numbers such that

2 2
+ . T
Y TP are integer numbers and let ¢ := s
Y

x
"exotic". Assume also that z > y and ged (z,p) = ged(y,p) = 1 We will

€ N. Such pairs we will call
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prove that ¢ > x and (¢,x) be exotic pair, that is ged (¢t,z) = 1,ged (¢,p) =
2 2
1 and Rl , z ;rp are integer numbers.
x
22 +p

l.t>2 — >z = 22 +p>ay < z(r—y)+p>0 (since

T > y);

2. Since ged (y,p) = 1 and ged (22 + p,p) = ged (22, p) =1 then
2

Tt+p 22 +p
ged (t,p) =gcd< , 729) = ged (y ” ,p> = ged (2® +p,p) = L.
(Here we used two folowing properties of ged :
i. Preservation Lemma: gcd (a,b) = ged (a — kb, b) for any integer k;
ii. Cancellation Property: If ged (¢, b) = 1 then ged (a,b) = ged (ac, b) )

<x2+p) +p
5. PP N Tndeed, EFP N Y B e
o ' oz x xy?
2 2 2 2 4 2 2 2 2 2 4
and PP RT oty L o, P PT ;rpy +ta
T T Y

2 2
P+ <x +p) € N then p? + 2pz? + py? + 2* : zy? because ged (z,y?) = 1.
Yy

(Ifa:b, a:candged(b,c)=1then a: be).
x2+p

Also, obvious that

Thus from exotic pair (z,y) we obtain new exotic pair (¢,2) with ¢ > z and
so on.... This process is infinite. To complete solution we have to prove existance
of exotic pair. Easy to check that pair (z,y) := (p+ 1,1) is exotic. Indeed,
2?2 +p yv>+p

x

=yeN

=leNandged(p+1,1) =ged(p+1,p) =

€ N because y =1,
ap +p

Tp—1
increasing sequence xg, Z1, ..., Lp, ...such that any pair (x,1,z,) is exotic. Since

zZ +p

ged (1,p) . Thus, if zo := 1,27 :=p+ 1 and zp,41 = ,n € N then we get

Tpyl = — x%—anrlmn,l—i—p:O,néNthen

n—1

2 2 2 2
Tyl — Tn42Tn = Ty — Tp41Tn—1 = Tpy) T Tnt1Tn—1 = T) + Tpy2Tn
anrl + Tn—1 :L'n+2 + T

Tnt1 (Tnt1 + Tno1) = Tp (Tpye + ) = = ,neN =
Tp Tn+1

Tng1+Tp—1  Tz+x0 P +3p+1+1  (p+1)(p+2)

=p+2.
T T1 p+1 p+1 p

Thus the sequence xg, 1, ..., Tn, ... in reality defined by Linear Homogeneous
Recurrence
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xn+1_(p+2) mn+mn71207neN
zo=1,z1=p+1

of the second degree with constant coefficients.
By the way appears the following problem:
Find sufficient and necessity conditions for zy and x; for which all terms of
the sequence
ap +p

n—1

X0, L1, ..., Tn,..defined by recurrence x,1 = ,n € N be integer num-

bers.

Problem 6.2(5-Met.Rec.)
First of all we note that a,, # 0 for any n € N. It can be easy proved by
Math Induction.
1. Base of Math Induction: a1, as,az > 0;
2. Step of Math Induction: For any n € N assuming a,, Gpt1,anto >
Ap+10n+2 + )

0 we obtain ay,y3 = ——— > 0.Thus, a,, apt1,0p42 > 0 =
an
. An410n42 + 9
Gpt1y Gnt2, Apts > 0.Since an43 = — . = Upt+30n — Gp410pt2 =
n

5,n € N then for any n > 2 we have

An+430p—0p4+10n4+2 = Apn420p—1—ApAp+1 — (an—i-3 + a'n-i-l) Ap = Qp42 (a'rH—l + an—l) —

an+3 + an+l _ an+1 + Ap—1

Gp4-2 (7%
gt o if n is even
That yields Ant1 +0n1 _ a4a, o
an if n is odd
as
2-1+5
Noting that a4 = % = 7 we obtain
On4+1 + Gn—1 3 if n is even 1 ( n_1>
—_— = B~ — > 2.
an, {4ifnisodd 2 7+ (1) 22
Thus, sequence (a,,) can be defined as follows
alzagzl,a3:2
1 L
i1 =3 (7+ (-1) 1) Gp — Qp_1 ,m > 2

and, therefore, a,, € Z for any all n € N.

Remark.

In connection with Problem 4 (final stage) and Problem 5 we can consider
the following

% Problem.

(©1985-2018 Arkady Alt 65



Math Olympiads Training- Problems and Solutions

Prove that for any natural number p there are infinitely many triples (z,y, z) of
distinct natural
numbers such that:
i ged(z,p) = ged (y,p) = ged (2,p) = 1

.. TY+p Yz +
ii. and

p .
are integer.

z
Solution.
Assume that we allready have a triple (z,y, z) of distinct natural numbers

that satisfy to i. and ii. And in addition assume that z > y > z, is integer

and z,y, z are pairly coprime, that is ged (z,y) = ged (v, 2) = ged (2, ) = 1. Let
Ty +p
t:=

z
the triple (z,y, z) ,that is:
1. t¢> x>y (suffice to prove t > x);

and we will show that triple (¢,2,y) has the same properties as

2. ged (¢, p) = ged (x,p) = ged (y, p) = 1(suffice to prove ged (t,p) = 1);
3. t,x,y are pairly coprime;
t+y tx+p xy+p .
4. , , are integer.
T Y t
Indeed:
T
1. TP xy+p>rz < x(y—2z)+p>0 (since y —z > 0);
z

Ty +p Ty +p
2. ged (t,p) = ged yz ,p)zgcd<z- yz ,p)zgcd(nyrp,p):

ged (zy, p) = 1because ged (z,p) = ged (y,p) = ged (2,p) = 1
3. Suffice to prove ged (¢, z) = ged (¢, y) = 1 because ged (z,y) = 1.

We have ged (¢, z) = ged my—l—p’m = ged Z-xy—i—p,x =
z

ged (zy + p, ) = ged (z,p) = 1 and, similarly, ged (¢,y) = 1.

P
+y > Y y+ptyz

t
4. Since = = i
x

nd =

x xz x
yerp GZ’:Ey—i—p—i—yz :y+xy+p€Zthenxy+p+yzfxz
x z

Y+
z
Ty +p
tx+p > '$+p_yx2+px+pz
Y Y Yz

2
ggi%zuz:meTE%EGZ@mmm+zem,

2
wzwx.wez(smce
z

tr+p

(because ged (z,2) = 1),

and

vrtp gy

Ty +p

z

€ Z.And at last =z e

Hence, yz? + px + pz : yz =

So, starting with triple (x,y,2) we construct new triple (¢,z,y) which has
the same properties as (z,y,2) and since z < y < x < t the process of con-
struction of triples can be continued indefinitely. Thus, everything reduced to
finding at least one triple that satisfy to our claims.
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Easy to see that (z,y,2z) = (2p+1,p+1,1) satisfy to these claims and

Ap41G + .
then, sequence (a,) defined by recurrence a,435 = M,n € N with

ay
initial conditions ai,as = p + 1,a3 = 2p + 1 provide us infinitely many triples
(ant2,Gny1,ay) satisfying the problem.

Problem 6.3(16-Met.Rec., Problem 5, Czechoslovakia, MO 1986)

Let @,, be some solution of the recurrence angg —2a,41+a, =2,n € N. For
example @, := n? satisfy to recurrence ((n +2)° — 2 (n+1)° +n% = 2). Then
b, := a,—n? satisfy to recurrence brt+2—2bp+1+b, = 0,1 € N which has general
solution b,, = dn + c.(Indeed, since by, 42 — 2by41 + by, =0 < bpy2 — by =
bpt1 — bp,n € N then b,41 — b, = by — by,n € N.That is (b,) is arithmatic
sequence with common difference d := by — by and therefore b,, = dn+ ¢ for some
ct).Hence, a, = n? +dn+c,n € Nand we have a; =1 <= 12+d-1+c=
1 <= d = —c. Hence, a,, = n? — ¢(n — 1) . Since by condition of the problem
ay, is integer for all n € N then ¢ € Z. (Indeed, ag =4 — ¢ = c € Z).

Now we can complete the solution.

Equation a,a,+1 = a,, we can consider as quadratic equation with respect

to m in natural numbers. We have

Anlpi1 = @y <= (n® —c(n—1)) ((n+1)270n>:m270(m71) =

m* —cem+c— (n® —c(n—1)) ((n+1)2—cn) =0 <

m*—em+ 2(c—1)n* —n'— (F—c+1)n*+c(c—1)n=0 <

2
2 _ 2 2N m=n’+n—c(n—1)
m cm—i—(c cn+n—|—n)(cn n n)—0<:>[ m=mn(c—(n+1))
If c > n+2thenn (c — (n+ 1)) > 0 and we can take m = cn—(n? +n) € N;
Ifc<n+1then n4+n—c(n—-1)>n?>4+n—(n+1)(n—1)=n+1and
we can take m =n?+n—c(n—1).

Problem 6.4(17 Met.Rec.)

First note that a,41 > a, + 1,n € N.Indeed, a; — a; > 1 and for any
n € N assuming agy1 > arp + 1,k = 1,2,...,n we obtain an42 — apy1 =
afH_l — Opt1 — Ay > afL_H —2ap41 + 1 = (ape1 — 1)2 > a2 > 1.For any term
a, of the sequence (a,),~,; we set in correspondence remainder from division
ap, by 1986, that is a,, — ri9s6 (a,),n € N. Further we will use short notation
Tn := T1986 (an) . Then to each pair (an,a,41) we set in correspondence pair
of its remainders (r,,r,+1),n € N. Since set of all pairs (a,,a,+1) is infinite
(because (an),~; Is strictly increasing) and set of pairs (7y,,7,41) is finite (
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because r, € {0,1,...,1986} for any n) then there are at least two natural
k,m such that (rg,rg+1) = (T'm,"m-+1) -Assume that k& < m and let p := m — k.
Note that sequence 11,73, ..., 7y, ...defined recursively as follows:

T = 39, To = 45
Tn+2 = T'1986 (T%H - Tn) ,meN

From the other hand note that 7;_1 = rigsg (r? — 7;41) ,4 > l.Indeed,

r? —ri 1 = a? — a;11 (mod 1986) = a;_1 (mod 1986) = r;_; (mod 1986)

and, since 0 < 719s6 (7‘12 — ri+1) < 1986 we obtain r;_1 = 71986 (7“12 — Ti+1) .

If £ > 1 then applying this "back (reverse) recurcion" to (r,7r+1) and

(Pm,"m+1) we obtain (rg—1,7%x) = (rm—1,7m) .Repeating this procedure k —
1 times we obtain

(r1,72) = (Tm—ka1, Tm—k+2) <= (r1,72) = (Tp+1a7‘p+2)-

Then using recurrence 7,45 = 71936 (r% 11— rn) ,n € N we obtain that
(r1,72,73,...,7p) = (Tp+1,Tp+2, Tp+3, ---s T2p) and futhermore, by Math Induction
we can prove that (7pi+1,7pi+2) = (11,72) for any ¢ € N. Having (rp41,7py2) =
(r1,72) as Base of Math Induction and in supposition (rpit1,7pi+2) = (r1,72) and
using rp42 = 71986 (r%H — rn) ,n € N we obtain

(Tpi+17rpi+2,rpi+37 ~'°7Tp(i+1)7rp(i+1)+177np(i+1)+2) = (r1,72,73, "',rpvrp+1arp+2)

and, therefore, (rp(iﬂ)ﬂ, rp(iHHQ) = (Tp+1,Tpr2) = (r1,72) .
Thus, sequence r1,72,73, ..., Tn, ... is periodic with period p,that is for any
n,1 € Nholds Tn4pi = r,.In particular, since r3 = 71956 (ag) = T'1986 (452 — 39) =

T1986 (1986) = 0 then r31,; = r3 =0 for any ¢ € N <= asqp : 1986 for any
ieN.
O
Problem 6.5(31-Met. Rec.)
So, we have ag = a,by = b,cog = ¢,dy = d and
Ap+1 = Qp — bn
1) SZEJZ—Z neNU{o}.
dn+1 =d, —ay

Obvious that for any n € N holds a,, + b, + ¢, +d,, = 0.

Also we have a1 + Cpp1 = @y — by + ¢y —dny <= apy1 + Cpy1 =
an + ¢ — (by +d,) and since — (b, +d,) = a, + ¢, then any1 + cpp1 =
2(an +c¢n),m €N < a, +c, =2"1(a; +c1),n € N. From the other hand
since apy1 = G — by, <= b, =an —apy1 = bpy1 = apg1 — ap4o then ¢, =
by, —bpy1 becomes ¢, = ap—ap+1—(Gpy1 — anaa) <= ¢ = @n—20n11+anta.
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Hence, a,+c, = 2" 1 (a1 + ¢1) = an+an—2an11+an12 =21 (a1 +¢1) =

(2)  ani2—2an11+2a, =2""1p,n €N, where p=a;+c; = a—b+c—d
Since 271 =27 —2.2771 4 2.9772 then
(2) <= any2 —2"p— 2 (ant1 — 2" 'p) +2(an, — 2" 'p) =0 =
Any2 — 2"p 1 a1 —2"""p 4g. 0= 2~ 1p
(\/5)71-"-2 \/i (\/i)n-i-l 9. (\/i)n
Tp42 — 2CO8 T. Tpt1 + x, = 0, where z,, : _

Since general solution of the homogeneous recurrence

(3) xn+2—20052-xn+1+$n:0,n€NU{O}

isx, = acos %Jrﬂsin %, n € NU{0} thena,—2""1p= (\/i)n (acos %T + Bsin %) —
ap = (\/i)n (acos nr + Bsin @) +2"2p,n € NU{0}.

=0 <

4 4
1- 1-
Since a1 = (\/5)1 <ozcos47r + (Bsin 47r) +271p =
1 1 a; +c ai +c a; —c
m= Va0 a8 )T e m e B s g = 20

and ) ) )
a9 = (\/5) (acos ;T—&—Bsin ;T>+2Op =
0,1—51:254—(&14-61)<:>—b1—01=26<:>
BfflerCl,fb*Cch*d,d*b
N 2 2 2
then
B bt ar—ca  at+tb a—-b+b—c a-c
T
Hence,

nfa—c mnm d—b . nrm 9 B
anf(\@) ( 5 COST+ 5 sm4)+2 (a+c—b—d)=

n—2

272 ((a—c)cos%—&—(d—b)sin%) +2" 2 (a+c—b—d).
By cyclic symmetry we also have
n—2

chn=2"2 ((cfa)cos%rJr(bfd)sin%T) +2" 2 (c+a—d—Db)
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1
and applying formula max {z,y} = (x +y+ |z —y|) we obtain

max{an,cn}=2”72(a—|—c—b—d)+2n7 ‘(a—c)cosz—k (d—0) sln—‘

and cyclic

n—2

max {b,,dp} =2""2?(b+d—c—a)+2 2 ‘(b—d)cos%—&—(a—c)sin%‘

To solve the problem suffice to prove that p, := max{an,bn,cn,dn} >

n—2
2 2 for any, divisible by four, natural n, that is prove the inequality
4 py > 2L EEN.

. nw k . nm .
Since for n = 4k we have cos — = coskm = (—=1)" and sin — = sinkn =

0 then iy, = 2 'max {2** 1 (a+c—b—d) +|a— [, 221 (b+d—a—c)+|b—d|} and
pgp > 2261 keN «—
(5) max{2*'(a+c—b—d)+]a—c|,22* T (b+d—a—c)+|b—d|} >
1.
If a+c # b+dthenmax {227 (a+c—b—d) +]a—c|,2** ' (b+d—a—c)+|b—d|} >
max {2271 (a+c—b—d),22*" 1 (b+d—a—c)}+min{la— [, [b—d|} =
22k=Lg+c—b—d|+min{la—c|,|b—d|} >2%*1|a+c—b—d| >
22k—1 > 95 1.
If a + ¢ = b+ d then inequality (5) becomes max {|a —¢|, |b—d|} > 1.
If a # ¢ or b# d inequality (5) obviously holds. The case when a = ¢
and b = d impossible because then since a + ¢ = b+ d we obtain a = b =c =d.
Thus, inequalty (5) proved and since p1,, > 22*~1 k € N then in particular we
have fi;59 > 222971 =219 > 109 (249 > 230 = (210)3 > 1000% = 109 ).
Analysis and generalization.
We will prove more general statement, namely we will prove that

max {an, by, Cn,dp} > QRTQ for any natural n > 2.
Proof.
Since a,, +c¢, = —b, —d,,n € Nthen ap41+cpy1 =ap—b,+cp—d, <
an+1 + cnt1 = 2 (an + ¢,),n € N and, therefore,
an+cn=2""Y(a;+c1) <= ap+c,=2"'(a+c—b—d),neN.

Hence, b, +d,, = — (a, +¢,) =2""1(b+d—a—c),ne€N.
Noting that max {an,c,} > %T_Fc" =2"2(a4+c—b—d),

b, +dn,

max {b,,d,} > =2""2(b+d—a—c)
we obtain max {a,, cn, by, dn} > 2" 2 |la+c—b—d|.

>

(Because { y$>f_pp = max{z,y} > |p|.
>

Indeed, if z > y then { x$>_—pp < x> |p| & max{z,y} > |p|

>
and if z < y then { yy>_fp — y > |p| <= max{x,y} > |p|).

(©1985-2018 Arkady Alt 70



Math Olympiads Training- Problems and Solutions

Thus, in case a + ¢ # b+ d, since |a+ ¢ —b—d| > 1 we obtain

Uy i=Max {ay,, by, Cpydy} > 2072 > ZnTz for n > 2.
Remark. s
In fact inequality u,, >2 2 for n > 2 holds any n € N.
For n = 1 we have max{ay,b1,¢;,d1} = max{a—b,b—c,c—d,d—a} >

1-2 1
1>22 = —2.Indeed, since at least one of difference of integers a —b,b—c, c—

d,d—aisn’t zero and a—b+b—c+c—d+d—a = 0 then can’t bea—b < 0,b—c <
0,c—d <0,d—a<0. (otherviceif a—b < 0,b—c < 0,c—d <0,d—a < 0 then
a—b=0b—c = c—d = c—a =0). Hence, at least one of a—b, b—c, c—d, d—a begger
then zero and, therefore, max,{a — b,b —c,c —d,d —a} > 1.

Consider now case a + ¢ = b + d. Due to cyclic symmetry of recurrence (1)
we can assume that a # 0 or b # 0 because if a = b = 0 then ¢ = d and at
least one of them isn’t zero (otherwice, we obtain a = b = ¢ = d and that is
contradict to condition of the problem). In that case we can cyclicly rename
numbers and get @ # 0 or b # 0.Then a, + ¢, = b, +d, =0,n € N. It can be
easy proved by Math Induction.Indeed, we have a1 +¢; =a—b+c—d =0 and
b1 +d1 = — (a1 + ¢1) = 0 and since a,, + ¢, = by, +d,, = 0 then a,, + ¢, = 0 yelds
Gp+1 + Cnt1 = Ap — by, +c¢n —d, =0 and bn+1 + dn+1 = - (an+1 + bn+1) =0.

Since a1 + bpy1 = ap — by + by — ¢, = @y — ¢, = 20, and

(pt2 = Gny1 — bpyr then

2(1n+an+2 = an+1+bn+1+an+17bn+l <~ Ap42 = 2an+172an,n S NU{O} —

Ap4-2 1 Qp41 Gnp

[ T KN Yok

=0 <=

(1) zp42—2cos %-xnﬂ—i—xn =0,n € NU{0}, wherez, := O e Nu{0} .

(\/5) no
. . . nm
Since general solution of the homogeneous recurrence (1) is x,, = « cos e +

ﬂsin%, n € NU {0} then a, = (ﬂ)n (acos%ﬂJrﬂsin%r),n e NuU

{0} ,where o, 3 be some real constants. Since ag = (ﬂ)o Q Ccos % + fsin %

1- 1- 1 1
a:aandalz(\/i)l (acosﬂ—i—ﬁsinW) <= a1=\/§<a~2+6-2) <=

n nm . o nm
a—b=a+B < B=—bthena, = (V2) (acosz — bsin I) ,n € NU{0}.
Hence, max {ay,, ¢, } = max {a,, —a,} = |a,| = 2"/? ‘acos % - bsin%‘ ,nE

N and, cyclic we have

max {by,d, } = 2"/? bcos% —csin%‘ :2”/2‘19605% +asin% ,neN.

- rka t
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Let oy, := acos%r — bsin%' , B, = ’bcos%r +asin% .
Then, since max {z,y} = W we obtain

—2 n—2
max {an, by, Cpn,dp} = 2"/2 max {an, B,,} = QHT (an + B, + lan — B,,]) > ZLT (an + 8,,) -

Therefore,
n—2
max {an, by, cn,dn} > 272 max{‘acos@ — bsinﬂ‘ + ‘bcosﬁ + asinm‘}
4 4 4 4
a b nmw nmw
o= = s T o e ) oo )
et cos N sin ¢ N en an+0,, a* + cos (o + 1 + |sin (¢ + 1 >

va? + b? (sin2 (g@ + %) + cos? ((p + %)) > Va2i+b? > 1 because a #
0 or b # 0. Thus, in the case a + ¢ = b+ d for any n € N holds inequality

n—2
max {an,bn, Cp,dp} > 272 .

Problem 6.6(19-Met. Rec.)
Recurrence that define the sequence a1, ag, ..., an,... can be rewritten as

(1) a® = >, a

teD(n)
where a1 = a and D (n) is set of all natural divisors of n.
First we collect experimental material which can clarify place of this prob-
lem among the known facts.
i. L et/n = p,where p is prime number. Then D (p) = {1,p} and we get

a? = a; +a, <= a, =aP —a : p by Little Fermat Theorem.

ii. Let/n = p?, where p is prime number. Then D (p2) = {1,p,p2} and we
get a?’ =a1+apt+aye aP? =a+al —a+tap < ap =a —aP.

If ged (a,p) = 1then ay = a? (aptp — 1) Since p?—p = ¢ (pz) ,where ¢ (a) is
Euler’s totient function (that counts the natural numbers which does not exceed
a and relatively prime with a ) then by Euler Theorem a?(P) 1 p?  and,

therefore, a,> : p>.If ged(a,p) # 1 then a : p and a® : p*> = a,2 : p? since

p > 2. Thus ay» . p? for any a > 1.
iii. Let/n = p* then by Math induction we will prove that aps = a?’ —a?" .

Base of Math Induction we already have.
For n = p**t! we have

k1 i i—1 k
a? = Z:Oapqc +ap =a+ Zl(ap —aP ) +aprr = aP a+ aprtr.
1= 1=

k+1 k k—1 k_ k—1 k—1 k
Hence, ayri1 = a? —aP . Thus, a,. = a” (ap P 1) =aP (a‘a(p ) 1)

and further as in ii.

- rka t
(©1985-2018 Arkady Al 72



Math Olympiads Training- Problems and Solutions

If ged (a,p) = 1 then a?®*) 1t P’ = ap ks
If ged (a,p) # 1 then a : p and a?" " pP" 7" Since for any k € N holds*

pF=1 > 2k=1 >k then o ' pF — ayr : pr.
(* We have 2¥=1 =k for k = 1,2 and for any k >3
from 28=1 > k follows 2F =2.2F"1 > 2k >k +1).

iX. Let n = p - gq,where p, ¢ be different prime numbers. Then
aPl = a1 +ap+aqg+ap, = a+al —a+al—atay,, <= apy =aP?—a’—al4a

and we have aP?—aP —a94+a = aP (a”(q’l) —1)—a(a® ' - 1) (a?7! — 1) because
aP@=D —1= (a9 1)” —1: (a?! —1) and similarly
atl —aP —a?+a=a? (a??~V —1) —a(a?~t = 1) : (a1 —1).

If gcd (@, pg) = 1 then by Little Fermat Theorem a?~*—1:p,a? '—1:¢ and,
therefore,
Gpq - P : : — 1)
. = apq : pq (since ged (p,q) = 1);
apq © q
If ged (a, pg) # 1 then by cosideration cases ged (a,p) # 1 and ged (a,q) =1
or ged (a,p) = 1 and ged (a,q) # 1, or ged (a,p) # 1 and ged (a,q) # 1 we

again, as we did before, obtain a,, : pq.

We stop consideration of particular cases and and proceed to the problem in
general case using Math Induction by n € N\ {1} (because for n = 1 statement
of the problem is trivial)

1. Base of induction for n = 2 already proved in i. when p = 2.
2. Step of Math Induction.

For any n > 2 assume that ay : k for all kK < n.Then in particular ay, : k for

all k € D (n)\ {n}.
Let p be prime divisor on n and k := ord,n = max {t |t e NU{0} and n: pt} .
Then n = p*m and ged (m,p) = 1.Let d is any divisor of n, then d =

p't,where 0 < i < k, t is divisor of m and p'D(m) := {p't|t e D(m)}.
k k

Since D(n) = | p'D(m) we can rewrite (1) as a, = Y. >, Gy =
i=0 i=0teD(m)

k=1 k=1

Z Z Gpiy + Z Opky = Z Z Gpit + Qplgy + Z Apky =

i=0 teD(m) teD(m) i=0 te D(m) teD(m)~ {m}

> Apit + Apkm + > Apky = a” an + > pky
teD(m-pk—1) teD(m)\ {m} teD(m)\ {m}

(because p*m = n and > Apiy = a?" '™ by (1) ).
teD(m-pk—1)
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Since t < m then p*t < n and by supposition of Math Induction Ay

pFt. Tt yields Ay : pF and, therefore, a, = a” — a?’'m (modpk) =
ap’'m (am(pkfpk_l) - 1) (mod p*) = T (b“’(pk) - 1) (mod p*) , where b :=
a™ for short. As above we consider two cases:
1. ged (a,p) =1 = ged (b,p) = 1 and then by Euler’s Theorem

pe(P*) 1 pF = am(P* =) 1= (modpk) = q, =0 (modpk)

2. ged(a,p) #1 <= a: p. Suffice to note that a? p* because
pP~1 > 2771 > k (see the similar case in iii.). And again a, =0 (modp").

Since n = p’flpSQ...pfl ( prime deciomposition of n) and a, pfi,z’ =
1,2,...,1 then a, : n.

Remark.

We will clarify the origin of recurrence, represented in the problem and at
the same time we can give another combinatorial solution of it.

Let n € N, I, :={1,2,...,n},R, := {0,1,....,a — 1} and let PM (n,a) be
set of all periodic functions from Z to R, with period n .

Let f € PM (n,a).Then f(m+kn) = f(m) for any m,k € Z. Indeed,
since f(m+n) = f(m) for any m € Z then f(m) = f((m—n)+n) =
f(m —n) and by Math Induction easy to prove f(m =+ kn) = f(m) for any
k € N. Since for any m € Z we have unique representation m = kn + r k €
Z,r € I, (see Remark to Problem 5.6) then f(m) = f(r+kn) = f(r).
Thus, any function f € PM (n,a) is completely determined by it’s restriction
on I,.

Since we have exactly a” different functions from I,, to R, then |[PM (n,a)| =
a™.For each f € PM (n,a) we denote p (f) smallest natural period of f, that
isp(f)=kif f(m+k)= f(m) forany m € Z and for any 1 < i < k there
is m € Z such that f (m +14) # f(m). Obvious that if n is period of f then

n is multiple of p (f) that is n : p (f).We will say that p(f) is main period of
f. For any k € D (n) we denote Fy, :={f| f € PM (n,a) and p(f) =k} Let
ay, = |Fj| be number of n—periodic functions from Z to R, with main period
k.In particular, F,, is the set of all periodic functions with main period n and

|| = an. Obvious that a; = |Fi| because we have only a functions from
I = {1} to Ra.
Since PM (n,a) = U Fy and Fy, N Fy, = @ if k1 # ko then
keD(n)

|[PM (n,a)| = Y, |Fx| < a"= >, ap < a" =ap+ > ap =
keD(n) keD(n) keD(n),k<n

a, =a" — > aj.
keD(n),k<n
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Now we wil prove that a,, divisible by n. Let S : F,, — F;, be 1-step shift
operator, that is S (f)(m) = f(m+1) and let St (f) := S*(S(f)).Then
St (f)(m) = f(m+1i) and p(S™(f)) = p(f) .By definition S° (f) := f and
obvious that S™ (f) = f . Consider the following equivalence relation on Fj, :

Two functions f,g € F), is equivalent if there are i and j such that S? (f) =

57(g) -
Then for any f € F, set

O(f) = {f751 (f)v‘sa(f)""’snil (f)}

is class of equivalency of f with respect to defined above equivalence relation
on F,. Note that |O (f)| = n. Indeed, S* (f) # S7 (f) for 0 <i < j < n becuse
if we assume that S*(f) = S7(f) then for any m € Z we have f(m) =
flm—i)+j)=f(m+(j—1)). Hence, 0 < j —i <m and j — i is a period of
f, that is the contradiction with p (f) = n. Let F be set of representators of
classes of equivalency (by one function from each class of equivalency). Then

O(fi)NO(f:) = @ if fi,fo € F and f1 # fa. Since F, = |J O(f) and
feF
|O(f)| =n for any f € F, then

|E. = > 1O(f)] =n|F] ‘n o= a, n.
feF

Problem 6.7*
Since
(1) (p42 = Qpi10n — 2 (an+1 + an) —ap_1+8 =
ant2 — 2= (ant1 —2) (an —2) — (an-1—2)
then for b,, := a,, — 2 we obtain recurrence
(2)  buto = buriby — by 1,n € N with by = 2,b; = by = (a® —2)* — 2,
For further we need
Lemma.
Let sequense (P,),~, be determined by the recurrence
(3) P7L+2: n+173n—Pn_l,nENWithPOZQ,Pl=P2=13>2,
and let (f,,) be sequence of Fibonacci numbers ( fr,+1 = fn+fn—1,7 € N and
fo=1, f1i=1).
Then requrrence (3) determine polynomial P, (z) of x, of degree f, with
integer coefficients, such that P, (cosh (t)) = 2 cosh (fyt) .
Proof.
Since

2 cosh (fot) = 2cosh (0) = 2,2 cosh (f1t) = 2 cosh (fat) =
2cosht =z and2cosh (fr11t) - 2 cosh (fpt) — 2cosh (f—¢t) =
4 cosh (f‘n-‘rlt) cosh (f’nt)_Q cosh (fn—tt) =2 (COSh (fn-l—lt + fnt) + cosh (fn-‘rlt - f’nt))_Q cosh (fn—tt) =
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2 cosh (fry2t) + 2 cosh (fr—1t) — 2 cosh (f,—¢t) = 2 cosh (frtot)

then by Math Induction we obtain that P, () = 2 cosh (fn+2 -cosh™! (;))

Coming back to recurrence (2) and denoting ¢ := cosh™! (g) we obtain that
(k2 — 2)2 -2= (4cosh2t— 2)2 -2=4 (2(:osh2t — 1)2 —2=4cosh?2t —2 =
2 (2 cosh? 2t — 1) = 2 cosh 4t and then accordingly to Lemma b,, = 2 cosh (4f,,t) . Therefore,
an = 2cosh (4f,t)+2 = 4cosh? (2f,t) and since cosh () > 0 for any z then 2+
Van = 2+2cosh (2f,t) = 2 (1 4 cosh (2f,t)) = 4 cosh? (f,t) = (2cosh (f,t))* =
(P (a'))2 .

Problem 6.8. )
t- —1
a) Let t, :=+/1+ 3a, then t; =3,a, = = 3 and, therefore,

2.,-1 1 t2 -1
S = _—(8+43-2 8ty | —
3 27(+ 3 © )

tn+4
3

2
1 tn 4 .
tiﬂ = 9 (16 + 8t,, + ti) = ( ) = th41 = ;— sincet,, > 0.

Thus we have 3" 14,1 = 37, +4-3" <= 3", | = 371,42 (3" - 3") —

3ntly, 1 —2.30F =3ng, 23" p e N <= 37,-2.3" =31, —2:3!

2.3"4+3 2.3" 141
3"t,—2-3"=3 < t, = + = + .

3n ) 3n—1
2-3"14+1 )
- 2 -1 31 C3lypg.3nl 4
ence, ap = 3 = 3 - 32n—1 .
2

t2 —1
b) Let t,, :=+/1+ 24a,, then t; =5,a, = "24 and, therefore,

2.,-1 1 2 -1
"+1—<1+4- n +tn> —

24 16 24
24 2 -1 1 9
2., ==—(1+4-2 tn 1==(t,+3).
b= 3 (144 B ) 1= (D)
tn + 3

Since t, > 0 then t,41 = <= 2”+1tn+1 =2"t,+3-2" —

2,y = 27,43 (20T = 2)" = 27T, 32" = 2", -32" neN

3-20 44  3.2241
n - 277,—2

27, —3:2" = 214,321 «— 27, 32" =4 < ¢, =
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3-22 41 )
- 2 —1 on—2 _ 243 2“1+1
ence, a, = =
o 24 24 3. 22n-1
Remark.

Note that 2271 +3.27"1 + 1 =0 (mod 3).

Problem 6.9.

a),b) Vans1 ¥ 1 - /@i = (V2 - 1)"+1 (x/i— 1) (v2-1)" =
(ﬂ—l)(m \/ﬁ)@\/ an +1) + an — (V25 + Va, +1).
Since, (\/ ant 1)+ f) — 34y + 2 + 21/2a, (@n + 1) = 3an + 2 + 21,

and (\/Qan ++va, + ) = 3a, + 1+ 2t,, where t,, := +/2a, (a, + 1)
we obtain:

V2(an + 1)+ a, = V3a, + 2+ 2t,, V2a, +Va, +1=+3a, +1+2t,

Hence*,

Vani1 +1=ani1 =/ Ban + 1 +t,) + 1—vBan + 1 + 2, = apy1 = 3a,+2t,+1.

strictly

1
(*Since function h (z) =V + 1 — /x = NCES T

monotone decrease, then from h (z1) = h (x2) follows 1 = x2).
From the other hand

21 = 2an 41 (ani1 +1) =2 (3, + 2t, +1)° + 6a, + 4t, +2 =

18a2 +8t2 +24-24apt,, 48t +12a, +6a, +4t, +2 = 18a% +24a,t,+8t> +18a, +12t,4+4 =

16a2 + 24ayt, + 16a, + (2a2 + 2a,,) + 82 + 12t,, + 4 =

16a2 492 +4424a,t,+16a,+12t, = (4ay, + 3t, +2)° <= tui1 = 4a,+3t,+2.

So, we obtain system of recurrences:
{ An+1 = 3ap +2t, +1

tn—i—l = 4a, + 3t, + 2 ’

Hereof 2t, = ap+1 —3a, — 1 = 2t,41 = Gpi2 — 3an41 — 1.5ince

2tn+1 = 8a,, + 6t,, +4, then Ap 42 — 3an+1 —1=8a, + 3an+l —9a, —3+4 <=

any2 —6ap11 +an, =2 .

Since 4a, = tp41 — 3ty —2 = 4dapy1 = tpyo — 3ty — 2 and 4ay 41 =

12a,, + 8t, + 4 we obtain t,419 — 3tp41 —2 = 3tp41 — 9, — 6+ 8¢, +4 <=
tn+o — 6ty41 + t, = 6. Initial condition follows from identities:

neN .
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From v2—1=+/a; +1 — \/a; we obtain a; = 1;
From (ﬁ71)2 =3—2v2=+9— /8 we obtain ay = 8.
Since t, = v/2a, (a, + 1) and a1 = 1,a2 = 8 we obtain t; = 2,t3 = 12.So0,
from recurrences ayy2—6a,41+a, =2 with a; =1,a9 = 8 and ¢,,42 —6t,, 41+
t, = 6 with t; = 2, {5 = 12 follows that a,, and ¢,, are integers for all n € N .

Problem 6.10.
Using substitution a,, := b, + 1 we obtain by = by = 1 and

241+ 2 — 3bpy1by, — 3bpy1 — 3bp, —3+17b, + 17— 16

by, 1=
2 3 by 1by — Abyys — A, — 4+ 18b, + 18 — 17
—3bp41bn, — by, 14b,, bp+1bn
bn+2 = s 1 + — 1= as —
_4bn+1bn - bn+1 + 14bn _4bn+1bn - bTL+1 + 14bn
1 14 1
= E—

bn+2 bn+1 bn 1
Thus, for sequence ¢, := — we have recurrence
n
Cnt2 — ldepi1 + ¢ = —4,n € NU{0} with ¢y =¢; =1,
and original problem equivalently reduced to the problem:

Prove that ¢, for any n € NU {0} is a perfect square of natural number.
There is two ways to solve this problem.

First way( use standard technic of solving second degree linear recurrence
with constant coefficients):

1 1
Since cpq4o — ldepy1 + ¢ = —4 <= (cn+2 — 3) — 14 (Cn+l — 3) +
1 1 n n n
<c,,,—3>=0thencn—3=a(7+2\/§) +,8(7—2\/§) zoc(2—|—\/§)2 +

B(2-V3) o ,n € NU{0} where 742+/3 and 7—2+/3 are the roots of quadratic
equation x2? — 14y + 1 = 0,associated with recurrence Tpto — 14xp11 + 2, = 0.

. 12 : 2-V3
From 1n21t1a1 conditions ¢y — 3 = ¢ — g = 3 we obtain o = 5 =
(ﬁl) and52+\/§<\/§+1> Since\/§71~@:1then
2v/3 6 2v/3 ' 23  2v3 3
: _<<ﬁ—1><2+¢é>”>1<<ﬁ+1> <2—¢§>”)2+
n — 2\/§ 2\/5
, (VB-D(+VE) (Vi) (e-ve)
2V/3 2V/3 "
g BNV (B (VB
n - 2\/§ 2\/§

is integer for any n € NU {0} because d,, satisfy to recurrence
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dpto —4dpy1 +dy, =0and dy =d; = 1.

Second way:

First note that ¢, > 0 for any n € NU {0} . Really, since ¢y = ¢; = 1 then
rewriting recurrence for ¢, in the form ¢,41 — ¢, = ¢ —cpn_1+12¢, —4, n € N,
and using Math. Induction we conclude that ¢, —¢,_1 > 0,n € N.

Hence, ¢, > ¢g = 1.Denote d,, :== \/c, and, in supposition that d,, satisfy
to the recurrence dy+1 — pdy, +dn—1 = 0 ,n € Nwith dy = d; = 1, we
will find recurrence for d2 .  Since dpi1dn—1 — d> = (pdy, — dp_1)dp_1 —
dn (pdn—l - dn—2) =dpdp_2 — d?“ then dn-‘,—ldn—l - d% = dadp — d% = pdidy —
d3 —d? = p—2 and from the other hand p?d? = d2 | +2d,,+1d,—1+d?_; . Thus,
P, = di +2(p-2+dy) +dy = di - (PP -2)dy +dy =
4 — 2p.From claim p? — 2 = 14 and 4 — 2p = —4 we obtain p = 4.Since d? and
¢y, satisfy to the same recurrence and to the same initial conditions then ¢, = d2.

Problem 6.11%,

First we will find for any n,m € N U {0} representation of a4, as lin-
ear combination of a,, a,y1,that is an4m = Pman + gmany+1 where coefficients
DPm, Gm We need to find. Note that a,+0 = poa, + @ant1 = po=1,90 =0,
Gp+1 = P10n + q1Qp41 = P1 = 0#11 = 1. Also we have Ap4+m+1 = 2an+m +
pntm—1 <= Pmt10ntqmi10n-1 = 2 (pman + QWLan—1)+2 (pm—lan + Qm—lan—l) NS
NU{0} = pms1 = 20m + Pm—-1 and gmy1 = 2¢m + @m—1. Since a_; =
ar —2a9 = 1,90 = 0,1 = 1 and pp = 1,p; = 0 we obtain  g¢n = Gm,Pm =
am—1, m € NU{0}.

Thus, Gptm = Gm—16n + Gman41 for any n,m € NU {0} and, in particular,
A2n = OGp—10n + Apln41 = Gn (an—l + an+1) = an (an—l + (Qan + an—l)) =
2ay, (an + ap—1),n € N U {0} .Since b, := a, + a,—1 satisfy to recurrence
bpt1 = 2by, + bp—1,n € N and by = by = 1 then b, 11 = b,—1 (mod 2) implies
b, = 1(mod2).Thus, as, = 2a,b, and by Math Induction we obtain agk,, =
2%a,,ci, k € N where ¢y, is some odd number. Indeed, as,, = 2a,c1,(c; := by, )and
for any k € N assuming agr, = 2%a,ck,c, = 1(mod2) we obtain aget1,, =
209k, boky, = 2 - 28, cpbok,, = 28T 1a, e 1 where cpy1 = cpbor, = 1 (mod 2).

Let m be any odd natural then a,, is odd as well because a; = 1 and
A = G2 (mod 2) implies a,, = 1 (mod 2). Then agk,, = 2¥a,,ci, for any k €

NU{0} and any odd natural m and, therefore, a,, : 2F <= n: 2¥.

7. Behavior(analysis) of sequences

Problem 7.1(104-Met.Rec)

Note that (a1 + a3) + 2 (a2 + a4) < 2a2 + daz <= a1 + 2a4 < 3az and
(a1 + 2a4) + 3(as + a5) < 3as + 6ay < a1 + 3as < 4day.
Let n > 4.Then for any natural 2 < k < n—2, assuming that a;+(k — 1) a1 <
kaj we obtain (a1 + (k — 1) agt1) + k (ar + agt2) < kag + 2kar11 <= a1 +
kags+o < kaps1.Thus, by Math Induction, we proved a; + (k — 1) ag+1 < kay, for
any k= 2,...,n — 1.Since a; = a,, = 0 then
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a+(n—2)a, <nap—; = 0<na,—1 < 0<a,_1.

Since 0 < a,,_1 then
a1+ (n—3ap—1<(n—1)ap2 = 0<(n—1)ay—2 < 0< ay_2

Assuming a,—; > 0 forany 1 <i<n-—2 since a; +(n—i—2)a,—; <
(n—14)ap—i—1, weobtain 0 < (n—i)ap—i—1 <= 0<ap_;1.
Thus, by Math Induction a; > 0,i=1,2,...,n.

Problem 7.2(105-Met. Rec.)
a) Since a, T N then a,, > 1 ,n > 1 and we obtain

2
1 1
ai+1<an+) :ai+a—2+2:>ai+2<ai+l<ai+3:>

n n

a?+2(n—1)<a2<al+3(n—1) <= V2n—1<a, <V3n—-2,n>1

More precisely, from v/2n — 1 < a,, follows that

1
Apt1 = ap + — < ap +

1
an, Vvan—1
That imply

nq no
i1 — a1 < S ———— = apy1 —2< S —— —
L k; Vo —1 1 kgz V2 —1

n—1 1 n—1 2 n—1
Gp1—2< 3 —— < - (\/2k+1—\/2k—1):
i k; Vok 1 k; V2k +1+v2k -1 k;

V2n—1—-1 = ap41 <V2n—-1+41.

Thus, for any n > 1 holds v/2n —1 < a,, < v/2n — 3 + 1.In particularly for
n = 100 we obtain 14 < v/199 < a190 < V19741 < 15.Also from this inequality

follows nhlr;o % =2
b)

i. Since a,, T N then a,, > 1 ,n > 1 and we obtain

3
1 31
CL,,3L+1—<CZ”—|-G2) :a%+3+a73+a76>(1%+3:>

n n n

al>al+3(n—1)=3n-2 < a, > V/3n—2.
1 1 n 1
i Gpp1 = Gnb—g < Qb ———— = =2 < Y e —>

a ¢/ (3n — 2)? k=2 {/m

(©1985-2018 Arkady Alt 80



Math Olympiads Training- Problems and Solutions

Ap4+1— 2<E
\/3k+1 {*/3/<:+ +\/3k+ ) (3k — 2) + {/(3k — 2)°

Z (VBk+1—-V3k—2)=3n—2-1 = ap41 < V/3n—2+1.

k=1

Thus, for any n > 1 holds /3n—2<a, < V/3n-5+1

(for n > 2 holds v/3n —2 < a, < v/3n—5+1) and nlLII;O ?—\/% = V3.

ii. Lower bound +/3n — 2 for a, isn’t good enough to provide proof of
inequality agogp > 30 . Starting from ay = 2 in inequality a3 41 > ad + 3 we
obtain that a2 > a3 +3(n—2) = 8 +3n — 6 = 3n + 2 and this gives sharper
lower bound /3n + 2 for a,,.Thus agggg > v/27002 > 30.

From the other hand this lower bound gives us sharper upper bound for a,, :

1 1
1 = O+ <l — e =
an (3n +2)°

An+1— 1<Z Z
LY (Bk+2)? k=1 {/(3k+2)* +\/3k+2 YBk—1)+ {/(3k — 1)

S (VBk+2-V3k—1)=Bn+2-V2 = ap1 < VBn+2+1-
k=1

V2.
1 1 1
Or, apt1 —a1 = +Z <1+4+27<
@ a3 (3k +2)°

1 @ 1 1
L7+ Y (\3/3k+2 ey 1) = L4+ V30 + 2331 = +VBn+ 2-1.

1 \ 1 )
Thus, a,11 < 1 +3n+2 <= a, < 1 + /3n — 1 and finally we obtain
1
VIn+2<a, < 1 + /3n—1.

Problem 7.3(106-Met. Rec.)

2n+1 3.9n
Ap+1 = 2" — 3an <~ Qpt1 = T + 5 — 3an <~
2n+1 on
ni1 — 3 3<an5),n€NU{O} —

o+l N 1 on . 1
pp1 > ap < +(-3) +1<a—>>+(—3) (a—> —

- rka t
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2n 1
ngél(—3)”Jr1 <a5> >0,n € NU{0}

For n = 2m we have

22m 2m41 1 22m 21 1
— +4(=3)™ (a—5) >0 <« ?>12(—3) m(a—) =

)
1 <4>m 1

60 \ 9 5
and for n = 2m — 1 we obtain

22m-—1 1 1 1 /4\™
+4(—3)2m<a—5>>0<:>a—>—<> .

5 5 40 \ 9
1 4 m 1 1 4 m
i —— ——< — | = hi
Since 10 (9) <a 5<60 <9> then

li L 4m< 1<1' L 4m<:>0< 1<0<:> !
im (—— (= a—— im — (= a—— a=—.
m— oo 40 \ 9 - 5 " m—oo 60 \9 - 5~ )

Problem 7.4(107-Met. Rec.)
Assume that a; > 0 (because if a3 < 0 then ng = 2).If b = 0 then inequality

b
Gnt1 < <1 + > an — 1,n € N becomes
n

ant1 Lap—1,neN << api1+n+1<a,+n,neN.

Hence, ap, +n < a1 +1 < a, < a1 +1—n,n € N and, therefore, for
ng = [a1] + 2 we obtain a,, < 0.Let b € (0,1) let P be fraction such that
q

b<? <1.Then
q

b
Gnt+1 < <1+>an—1,n6N = apy1 < <1—|—p>an—1,n€N =
n nq

ng + ng +
Upt1 < qnqp-an—l,nEN:>an+1§ﬁ'an—l7n€N<:)
An 41 A, 1
o< n € N.

ng+p = (n—1)g+p ng+p’

Hence, Z ( ia (kiak ) < - Z

kq+p Dg+p —1 kg +p
Qnt+1 a1 _i 1 Apt1 <ﬂ i 1
ng+p (I-1)qg+p~ ;=ikq+p ng+p - p iZ1kqg+p
Ap+1 <@_ n 1 Ap+1 @ lz": 1
ng+p - p =1 (k+1)g nq+p P qiSk+1

- rka t
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ﬂ + 1 . hn+1 7 G, < a1 1 hn

M S n e N +«— —— —— <
natp TP g a (n=Lqg+p~ p q
wherehn:1+§+...+f.
n
Since sequence (h,,), cy have no upper bound (unbounded from above)*
that is for any M > 0 there is n € N such that h,, > M then, in particular,

1 h,
for M = M—|—1 there is ng such that h,, > M—i—l = @_‘_,_ +l and,
p p q q
1 h
therefore, S T < Byt Mg — ap, < 0.
(no—1lg+p - p q¢ ¢ ‘
. 2"5 1 251 1 gntl _ gn
Noting that hon+1 — hon = - > = =
k=oni1 kT oy 27! 2ntl
2 _ 1 btain 3> (s — hox 1) > & o= hgn — hogin > 0 e
——— = — we obtain . — Rok— — n — hoi— —
ol 5 P ok ok—1 B 2 21-1 9
hon — hy > g <= hon > g + 1.Let M be any positive real number. Then for
2(M -1
any natural n > 2 (M — 1) we have hon > g+1> Qqu:M.

Or, we can prove that h, unbounded from above by another way, namely
noting that

1\" 1 1 1
<1+> <e<:>1+<el/”<:>1n(1+)<<:>ln(n+1)—lnn<
n n n n

n 1 n
weobtainh, = > — > > (In(k+1)—Ink)=In(n+1)-Inl=In(n+1).
k=1 k=1

Problem 7.5%(109-Met.Rec.) (Team Selection Test, Singapur)
2

1
Let n € N, ag = 5 and ag4+1 = ax + %7 k € N. Prove that
n

1
1—-—<a,<1.
n

Solution. )
a Ak+1 Qg a
ak+1=ak+*k — 72*—&-% <— ka:bk—i—bi, where
n n n n
ak . .
by := — .Since by = — we have equivalent problem:
n n

1
Let n € N, bg = o and by1 = by + b2,k € NU{0}. Prove that

1 1
- - < p < —.
n n n
S 1 1 1 1 1 1 L
ince, — = —— = — — — = — — we have
br41 bk, +bi by brp+1 b +1 by brt1
n=l 1 1 1 1
)DL R ML
k=0 bk +1 bO bn bn

Note that by T N, because by1 = by + b2 > by, k € NU{0}.
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1
Hence b, > by = — and
2n

n—1

2
2n—i§ Z 1 _.n n _ 2n
by, bo+1 bo+1 1 2n+1
k=0 — 41
2n
1 2n?2 2n(n+1) 2n+1
— > — = = b, < ———.
I S TS | = on(n+1)
2 1 1 1
SinceL<f <= 2n+1 < 2n + 2 we obtain b, < —.
m(n+1) n n
1 1
From b, < — and b; T N follows that for all 0 < k < n holds by < —.
n n
1 n—1 1 n—1 1 2
Using this we obtain 2n — — = > ——— > — =
by k:Obk+1 k:Ol+1 n+1
n
1 2 2 1
— < 2n— i :n(n—|— ) <:>bn>Landsince
by, n+1 n+1 n(n+2)
11 1 1 n-1
oxl L Lkl < n’4n > n’+2n-n—2 < 2 >0,
n(n+2) " n n? n+2 n
1 1
we finally get b, > — — —.
n o on

Problem 7.6(110-Met. Rec.)
Let a, := (2 + \/§)n + (2 — \/g)n then

ay)=2,a1 =4 and apy1 —4a, +ap—1 =0,n €N,

Since a,, is integer for any n € NU {0} and

n_a_ _ n:a_ _ _ n:a_ . 1
(24+V3) =a,—(2-V3) n—1+1—(2 = V/3) n—141 OIVoR
n n 1

i s (1o — ) =
fonce, i {(2 v} o (1 ) <

Problem 7.7 (111-Met. Rec.)
a) From the recurrence x,, 11 = zp, (1 — ), n € NU{0} and 2 € (0,1) immediatelly
follows that z,, is positive for any n € NU{0}. Since x,,11 — x, = —22 then
(®n),>o is decreasing sequence. Thus (z,) converge to some number a and
1 1
since Tp11 = xp (1 — ) < 1 then a € [0, 4} anda=a(l—a).

Therefore lim =z, = 0.

n—oo
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1 1 1 1
For any k € NU{0} we have = = —
] ] ] Th+1 Tk (1 — .’L‘k) T 1— Tk
- — and since > 1, then

Thy1 T 1wy — Tk
1 1 n—1 1 1 n—1 1
_:Z< _>:E >n for any n € N.

Tpn  To =0 \Tk+1 Tk p—o 1 — g
Thus, we have inequality

(1) — > — +n, which can be rewritten in the form

T Zo

1 1
(2) >14+ —

NnTy nTo
T 1
and in the form z,, < 0 < —.
l+nzy n
. 1 1 1 n=1
Since z, < —,n € Nand — — — = then
n T Z2 h—e 1 — Tk

n—1 n—1 n—1
1 1 1 k 1
—_— E :k_2 :kg_z <1+k—1) :n—2+hn72<n+hna

1
where h, =1+ 5 + ...+ —.So, we have inequality
n

1 1 1 hn,
(3) 1+ — < <14+ —+—.
nxg nTy, nTo n
. n . n hn+1 n
Since — decreasingon N ( — <~ nh,+h, >nh,+— <—
n n n+1 n+1

hy, 2
hn>L <= h,>1) and 2 < =
n+1 n2 n

1 2
+o=2)

n n

(th_hl+hn2_hn<1'”+ l
n? n2h n2 n2 1n2 L n
then lim — = 0.Therefore lim <1 + —+ ") = 1 and since,
n—oo N n— oo nray n

1
lim (1 + > =1 as well, then lim =1 < lim nz, = 1.

n—oo nIgo n—0o00 NIy, n—o00

Or, alternatively, lim — = 0 because
n—oo N

1 1 1\ 2
hf 1+272+372+'"+ﬁ <<2)

3
N[

n n

Comment . B
Using Arithmetic Mean Limit Theorem, we can easy prove that lim — = 0.

n—oo m
( AML Theorem: If lim a, = a then lim Gitdet..+on _ a).

n—oo n—oo

n
And for those, who are familiar with Shtolz Theorem, this problem became
simple exercise on it’s application, namely
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1 1 1 1
1 . Tn o Tn T 1=z, 1
lim — = lim &2 — Jim 2 Tnol gy Tl _ - =1.
n—oo N, Nn—0o N n—oom—(n—1) nooo 1 1— lim z,_1
n—oo

bi) First note that z,, > 1 for all n € N.Really, z; = a > 1 and from
supposition x,, > 1 follows 2,11 = @, (z, — 1) + 1 > 1.Moreover, Z,,11 — x,, =
(2 —1)* > (a—1)?
and this imply z,41 >a+ (n—1)(a —1)
Since Tp11 =22 — 2y +1 = 21— 1=a, (v, — 1) =

2

1 1 1 1 1 1 1

$n+171:xn(:rn71) z,—1 =z, xnfl_xm_lfl:zn

we have

and

0< - —= < 5

> 1
So, > — =

n=1 Tn a—1"
bii) Since z
2 Tpg1 — 1
Tpp1 =@, —Tn+1 <= zp1— 1=z, (x, — 1) <= z, = . 3
o

then
Tpy1— 1 _ Tpy1 — 1 and Tn+1 _ Ln+1 (0‘ — 1) >a—1.

T1T2...Ty = =
x1 — 1 a—1 T1T2...Tp Tpt1 — 1

. T
From the other hand, since ontl Ty — <1 — ) < Zp
Tn Tn
Tn+1 . Tn+1 .
then "; < 1, and denoting p,, := —"*L " we obtain
L1X2...Tp

n

Tn41
Pn =Pn—-1"—"5— <pp-1,n>1.
:'Cn
Z"rH»l
Therefore, p, <p1 =21 =aanda—1< ——— < a.
T1T2...Tp

T
If @ is integer then L"HJ =a-—1.
T1X92...Lp

Remark.
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T x, a—1
Since lim x, = co then lim —mt — im M =a—1.
n—o00 n—oo L1x9...Ly  N—0 Tppl — 1
c) For convenience we will use substitution z,, = —a,,n € NU{0}.
1 1
Then ag = —3 and ap41 =1— iai,n e Nu{o}.

17
Note that a,, € (0,1) for all n € N. Really, a; = 8 and from supposition
ay € (0,1) immediatelly follows

1 1
mwlzl—aie(2J>C(QU.

n—oo n—oo n—oo

1
Suppose now that a = lim a, then ¢ = lim a,y; = lim <1 — 2a%> =

1 1
1—= lim a2 =1- 5(12. Since equation a = 1 — §a2 has only one solution in

n—oo
(0,1) ,namely, @ = v/3—1.Then only a, can be the limit of sequence (an),;>1 - So,
suffice to prove that sequence (ay),~, converge to a. a

1 1 1
For any n € N we have, |ap+1 —a| = 1—5(1%—1—5(12 :§|a%—a2| =
1 1 3
§|an—a\-(an+a)<§\an—a|-(1+\/§—1):§|an—a|.

\/g n—1
Hence, |a, — a|] < <2> |ay — a| and that imply lim |a, —a| =0 <
n—oo

lim a, = a.
n—oo

Problem 7.8 (112-Met. Rec.)

Note that z,11 = 0.522 — 1 < % —

Tpe1 1 Tp\2 1
=3 =3 Géﬁ In+1 =5 = n

where a,, := —%,n e NU {0} and ap = —1/6.

We will prove that a,, € (0,1/2),n > 1.

1o, 1 1 17

Indeed, a1 = 570 = 5735 35 € (0,1/2) and for any n € N

supposition a,, € (0,1/2) yields —1/4 < —a2 <0 =

¥ ”;‘3&2”
N | =

1
—<-—a2 <= & a1 €(0,1/2).
So, by Math Induction a,, € (0,1/2),n € N.
Suppose that sequence (a,),~, converge and a:= lim a, thena >0 and
f n—oo

n— oo

1 1
a= lim ap41 = lim (—an>:— lim a; = - —a* =

1
?ta—>=0%2 4=
We will prove that lim a, = a.

n—oo
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3—1 1 3
SinceO<an—|-a<\[2 +§:§thenforanyn€Nwehave
1 1 1
|an+1—a:’2—ai—a2‘2—ai—<2—a2)‘=
3
}ai—az‘:|an—a| \an+a|<§|an al
e
3
Hence, |a, —a| < ({) lay — al
n . . 3—-1
Sincean:—% then lim z, = -2 lim an:(—2)-\[2 =1-v3
Problem 7.9"
) 1 1 1 1 1 2 1 1 1
a) a1 = — - = — 2= — — = — — = = —,
L= =07 37 9y® T4 716 1 8 8
5 nay (1 —nay) 1
1. app1 =0y, —na;, = —F- < — =
1 " i
ey L TR
. 9 1 1 n
2. Slnceang%,neNandanH:an—nan <= P :a— 1 ra
1
we obtain -—< nn = 2n and
Gp41 Qp 1— —
2n
1 ! zn: i <2n32 (n+1l) =
- — = n=n(n
an+1 a1 k=1 ]. — k‘ak k=1 1 1
—2< 1) < a, > .
i1 n(n+1) “ “24n(n—-1) " nn+1)
1 1
<a, < —.
’n(n—!—l)*a ~ 2n

But obtained upper bound for a,, is not good enough to prove inequality

3
a1+a2+...+an<§.

1 1 1 n k
Then, using —— < a,, and -——=> , we get
n(n+1) any1 a1 5= 1—kag
1 n k n k n n+1)(n+2
B T S e LT RN
Gn+1 =1 L—=kar — 55 1—k- k=1 2
kE(k+1)
1 Z(n—i—l)(n—l—2)_‘_1 :%SL.
Ant1 2 n(n+1)

1
Hence, a1+a2+...+an§2<1—> < 2.
n+1
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3
But we need a1 +as + ... +a, < §.T0 get this upper bound we will use in

the sum a; + as + ... + a,, new estimation of a,, , starting from n > 4.
So, for n > 4 we have

1 1 1 7 1
vt an = 2y ———
ai+az+..+a 2+4+8+Zak<8+ Zk(k+1)

Tl Ly T 1_1_3
8 4 n+1 8 28 2

. 3 . .
Since ai,a1 + as, a1 + az + ag < 5 then inequality

3
ar+as+ ... +a, < 3 proved for all n € N.

Second solution.
Since apy1 — ap = fna% < 0 then a,, decreasing sequence and since
na, (1 —na,) _ 1 1
2 n n
Apt1 = Qp —NAZ = ——— > < —
s " " n n n+1

1
then 0 < a,, < —for all n € N.
n,
1 1 n

1
From 0 < a,, < — and — — = — follows
An+1  On 1—na,

1 1
— — >n for all n € N and then
Ap+1 [07%
1 1 n 1 1 1
—22( )>Zk—(n+)=>
Gnp1 a1 it \Grs1  ap 1 2
1 >2+n(n—|—1):n +n+4
Ap+1 2 2
< 2 < 2 eEN =
Qn , N
Ui a4 ()
2
an§77n22
(n—1)n
(si ! 2 hena, < eN)
sincea; = - = —— thena, < ———,n .
YT T 12114 n2—n+4
Further the same as above.
Remark.

Little bit worse upper bound can be obtained using AM-GM inequality,

1
namely, using first estimation a,4+; < Tt equalities
n

3

Ap+1
1—na, = and —2= e have
" an Ant1 Zl 1 — kay W v
1 nok 1
o=y My, Ls /g D) ”+)
Ap41 k=1 On+1 (In+1

n
because n! > (%) .

3
= a, < —— forn > 1.

n(n—1)

That gives us ap41 < m
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b) Although the lower and upper bounds for a,, represented by
double inequality
1

- < < =
n(n+1) = n = n(n+1)
3
provide proof of inequality a1, a1 + as, a1 + as + ag < 2
2
nn+1
REAT gy

they are still not good enough because lim
n—oo

n(n+1)
Thus, we somehow have to improve obtained bounds.

k 1
Since the function h (x) := T increasing in |{ 0, k)
1 2 1
d 0,—) th
an (k;(k;+1)’k(k+1)> “ ( k) en
i < i < i <~
l—k-; 1 — kay 1_]{.L
kE(k+1) k(k+1)
k kE(k+1)
k+1 .
B i
E(k+1) . .
Unfortunately, upper bound o1 s not convenient for further summa-
tion. But we can take ——, for any n > 3, as upper bound for a,,, instead
n(n+3)
2 2 3 3 1
< <= n > 3). Then, si —_— < -
Rt D nrD SnmTd) n 2 3). Then, since 7=y < gwe
k k
obtain < =k+3.
1-— kak 1—k- L
k(k+3)
1 1 n
Since - — = ,then using inequalit
Ant1 a3 k;z::?, 1 — kay & thedialty
E+1< <k+3,k=3,4,..., we obtain
1—kay
n 1 n
Y (k+1)< —— <> (k+3) =
k=3 An+1 A3 k=3
1 2 1 1 4 1
ntlnt?) g, L 1 o3dtd) 5,1
2 as  Qpi1 2 as
1 2 1 3 4
(n+)(n+)+2< <(n+)(n+)_7<:>
2 Gn41 2
(n+1)(n+2) 1 (n+3)(n+4)
< <
2 Ap41 2
< < 2
—— <oy < —————.
n(n+1) n+2)(n+3)

So, we get "good" bounds for a,, because
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2
lim — %y (22D (H)
n(n+1) n(n+1)
2
i.e. we get asymptotic representation for a,, : a, ~ ——.
n(n+1)

c) Follows immediately from (b).

Problem 7.10

i. We will prove that |a,| < 1. Really, for any n € N suppose that |a,| < 1.

This imply |a,| <2 < 0<a2 <4 & -2<a2-2<2 <
a2 —2| <2 < |anq1] < 1.

If a; = 2, then ay = 1 and result remains the same,

namely |a,| <1 for all n > 1.

ii.

If ay = 3 then the same recurrence defines an unbounded sequence.

Really, if a; = 3 then a,, > 3 for all n € N because from supposition a,, > 3
22 _9-2

“”2 > == = 3.5 > 3.Hereof

a%—2>3an—2 3an, 3(an — 1)

=20 e _gx2\nT )
2~ 2 2 Int1 2 —

3 n—1 3 n—1 3 n—1 1
an—22<2) (a1—2):(2> <— an22+<) >3+n2

Problem 7.11
- 3 1 3 1
i. Since api1 = ~an + — > 24/ >a, - — = /3 then
4 a 4 an,

an > /3 for all n > 1.
Assuming that M is upper bound for (a,)
we obtain

1
n = 7 Un — <M+ —
i1 = gon = Mt A

andweclaim§M+L:M <— M=—.
4 3 3

follows a,41 =

Ap+1 =

[\)

neN > Since V3 < a, <M

Note that ags = E <\/§, \;lg) Then by Math Induction we obtain
\/§ <a, < %,n > 2

ii. Noting that 2 = % 2+ % we obtain

lans1 — 2| = ‘3an+1 (i~2+; ‘—

‘i(an—2)+22_a:” :|“”_2‘i_2clln .

Since\/?:gangﬁ <=

- rka t
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1 1 1 V3 1 V3
<< e e <Y ey

2~(4/\/§)_2an_2\/§ 8 ~ 2a, ~ 6
3_v3_3_1 3 V3 4

4 6 —4 2a, 4 8

3 2
O<,,£<§,£<,

4 6 4 8 73 /

3 1 3 1 3 3 2
hen |2 - —|=2_ — <2 Y2 =2
then | = o 151 T2, S48 3

Hence, |an+1 — 2| <
2 n—2
3

Problem 7.12

9 9 n—2
§|an—2|,n22:>|an—2|< 3 lag — 2| =

()<

b, 1
By substitution a,, := 2L in the recurrence an4+1 = 1+ — we obtain
n a'n,
b b b b
"2 4 = bpao = by +bySincea; = — =land ag = — =2
bnt1 bny1 by bo

we set by = 1,bp = 1. Thus b, = f,, for n € N.

Since f71,+2 = fn+1 + fn = 2fn + fn—l and fn = fn—l + fn—2 we obtain
fn+2_fn = 2fn+fn71_fn71_fn72 = an_fn72 <~ fn+2 = 3fn_fn72'
S0, fonts = 3font1 — fon—1and  fonq2 = 3fon — fon—a.

We will prove:

f2n < @

i. agn—1 = = A2n,
" f;n—l fon "
.. 2 2n+2
1. G2p—1 = no 2R a2n+1;
f2n—1 f2n+1
iii. ag, = Ln“ 7f2n+3 = A2n+42;
) fon fonto
Proof. F F
i. Qop_1 = 2n 2n+1

— W2n
f2n—1 f2n
[30 < fani1fon1 = foni1fon1 — f3, =1
(follows from Cassini’s identity f,_1fni1 — f2 = (—=1)").
1 1

Moreover, from 0 < ag,, — 2,1 = <=7 and
fon—1fon J5n-1
lim — = 0 follows

fn+3fn_fn+1fn+2 = (fn+2 =+ fn+1) fn_(fn-H =+ fn) fn+1 = fn+2fn_f3+1 = (_1)n+1 :

Thusa A2p—1 < A2p41 <

- rka t
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fon < fonto

2n—1+1 -1
f2n—1 f2n+1

> fonsofon—1—fonfont1 > 0 <= foniafon—1—fonfont1 = (=1)

and

f2n+1 N f2n+3

f2n f2n+2

Q2p > A2p42 < <= fongafon — fonsafont1 <0 =

fontsfon — fonvafonir = (—1)2"T = —1.

So, b:= lim as,_1 = lim as, and as,_1 < b < asy,.
n—oo n—oo

then we obtain that b is positive root of equation

1+5

1
b=1—|—g<:>b2—b—120thatisb: 5
Alternatively, we can directly, using Math. Induction prove that
1+V5
(1) Aon—1 <

Indeed, for any n € N assuming (1) we obtain:

Since as, =1+
A2n—1

< Q9.

2 Vi—-1 145
fan+1 +a2n N 1+5 T3 2
1 2 1++5
Aonio =1+ > 1+ = .
e A2n41 1++5 2 /5
fo 14+V5  fs

(Base of Math Induction is inequality aq = as

< < =
fi 2 P
wich obviously holds)
Another solution can by obtained from Binet formula for f,, and

calculation of limits.

Problem 7.13
Since a,, > 0 for all n we will consider equivalent recurrence

2
2 an 1 Qn 1
a =—+4+1+—=5 <= a ==+ —
n+l 4 Tl a2 il 2 + an
which by substitution a,, = P can be rewritten in the form
an
Pn+1 Pn dn (2Qn + pn)2
=—+1+—=—=—"
dn+1 4% Pn 4ann

Thus we can consider two recurrences
2
Pn+1 = (Qq%+pn) y Qn4+1 = 4ann , = 1a2a sy where P11 = 97QI = 43
since a; = —.
2 2 4 4
Let b, := ————, then b2 = 5 = I integer because
a% -2 ap — 2 Pn — 2Qn
Pn — 2g, = 1 for all natural n.This is easy to prove by math induction.
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Really, p1 — 2¢1 =9 — 8 = 1 and since

Pn+1 — 2qn+1 = (2qn +pn)2 — 8pngn = (2% - pn)2 = (pn - 2qn)2

from supposition 2q,, — p,, follows p,+1 — 2¢,41 = 1.

Now using math. induction we will prove that ¢, and 2g, + 1 are a perfect
squares for any natural n.

Really, ¢ =4 =22,2¢; +1 =9 = 32

Suppose now that ¢, = m? and 2¢,, + 1 = k2 for some natural m, k.

Then, since gnt+1 = 4¢npn = 44, (2¢, + 1) we obtain g,41 = (2mk)2and
2qni1+1 =8¢y (20, +1) + 1= (4g, + 1)*.

Problem 7.14(All Israel Math. Olympiad in Hayfa)
Suppose opposite,i.e. that there is sequence 11 < ro < ... <71 < ...
of natural numbers such that A,, = 0. All this r, k =1,2,3, ... should
be odd numbers, because, otherwise, all terms of sum A,, are positive
and then A4,, > 0.
Since ri, k = 1,2, 3, ... odd numbers then from A,, = 0 follows that sum
A,, must contain positive and negative numbers, i.e. in supposition that
it =1,2,... p n

i = —bi,z‘bizw Lp42,.m » e have Ar, = LA
Thus, A, =0 <= bi* + by* + ...+ b =bl, + by + ... + bk
There are i € {1,2,...,p} and j € {p+1,...,m} for which b;* = b}*
because otherwise, we get contradiction.
(Really, without loss of generality we can suppose that

by = max {b1,bs, ..., by} and then, denoting ¢; := b—‘,z =2,3,...,m,
1

p m
we obtain that 14+ > ¢i* = > ci*.

i=2 i=p+1
Since 0 < ¢; < 1,7 =2,3,...,m then klim ¢;* =0 and, therefore,
P m
1= lim <1+ Zcf’“) = lim ) ¢*=0)
k—oo i=2 k—oo—pi1

Using this property we obtain the same situation for m — 2 numbers
and after m — 4 and so on till m — 2k > 0,i.e. till we get one non-zero
number which equal to zero.

Remark.

The statement "There are i € {1,2,....,p} and j € {p+1,...,m}

for which b;* = b7*" can be proved shortly by the such way:

Since by* + by +...+ bk = bf + by + ...+ bk then max {by, by, ..., by} =

lim /BB b = lim rﬁ/b;il 4 D0y e b = max {by1, bpgay ey b} -

Problem 7.15%(#7,9-th grade,18-th All Soviet Union Math Olympiad,1984)
(Proposed by Agahanov N.H.)
Let us calculate several first terms of the given sequence:
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1 =120=—-1,2 }zfgxfix*fl

1= 4LHd2 = 3 = 9’ 474’5716’67 256

Lemma.

Let sequence (p,) determined by recurrence p,; = p2 + %L n € N with
initial

3
condition p; = 3 Then for any n € N holds following inequalities:

; 1

i pp < M eN;

ii. pn > ppi1,n €N;

iii. max {|z2,13], [T2n+4|} < pn-
Proof.(Math. Induction by n )
1. Base of induction.

1
Let n =1 then p; = <§,

ool w

5 5 3
and max {|zs|, |zg|} = max{16 } =16 < 3 =P
2. Step of 1nduct10n

1 1 1
i pn+1—pn+?< 4+1 5
. . Pn 1
11. pn+1:pn+?<pn <~ pn<§.
1
iii. |Zonts] < |132n+4| + = \132n+3| <pZ+ ? = pn+1 and
|Tonr| < |2nts|” + |332n+4| <ppi+ 7 <ps+ 7 = Pnt1-
Corollaryl.
lim p, = 0.
n—oo
Corollary 2
lim z, = 0.
n—oo
Problem 7.16
1 1 1 1
an+1§an(17an)<:> Z = — + e
ant1  an(l—ap) an l-—ay,
L 1 _(-addan 0 @y @ g 6y
pi1 Gy 1—a, 1—a, an (1 —ay) Gt
n 1 1 1 1
Thus,Z( —)>n<:> -—>n =
E=1 \Ok+1 Gk an+1 Q1
1 1 ap(n—1)+1 ay
—>n-l4+—=—"—"— = g, < ———— =
Qn, ay ay ap(n—1)+1
< i < 2 since i <2 =
na _— 3 _—
" Ta(n—1)+1 ap(n—1)+1

nap < 2a1(n—1)+2 < 241 —2 < 2a1n.
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Problem 7.17(BAMO-2000)

1
Since a, (1 —a,) < 1 and a2 < a, — Gp11 <= apy1 < a, (1 —a,) then

n —

1 1 1 1 1
an€<0,> and > — + > — + 1 for any n > 2

4 An+1 T oap l_a'n Qn
because >1
—a,
1
Thus, for any n > 2 we have > —+4+1 <
Ap+1 (07
1 1 1 1
—n+l)>——n = ——n>—-2>4-2=2 =
Ap+1 Qp be a9
—>n+2 = a, < —— < —.
an n—+2 n

Problem 7.18 (SSMJ 5281)
First note that a,, > 0 for all n € N ( a3 = a > 0 and from supposition

n

7 > 0. Also note that sequence {an},~,

an > 0 follows a,41 = T a

an abtt
1+ab 14+dh
Therefore, sequence {a,},~, convergent to some nonnegative limit .
. . a x
Then z = lim a,y; = lim n > = = z=0.
n—oo n—oo | + an 1+ aP

is decreasing. Indeed a,, — an4+1 = an > 0.

Thus, lim a, = 0.

n—0oo

Since recurrence a1 = ainp can be rewritten in the form
1+ an
ab . . .
ap = Wﬁchen denoting a? via b, we obtain recurrence
by,
1 b = ————— with initial condition b; = a”.
( ) n+1 (1 T bn)p W 1
1 1+b,)F —1 1 1
Since - = A4ba) =1 and lim b, = lim af = 0then lim < — ) =
bn+1 bn bn n—oo n—oo n—oo n+1 bn
lim — = p. Hereof, by Arithmetic Mean Limit Theorem
n—oo n

(if lim x, = a then lim it rat e

= a ) we obtain

1 1 n
. . b, b n-—1 . =2 \br b1
lim — = lim *—> .- —— = lim =

I 1 1
im | — — =p.
n—0c0 bn bnfl P

1 1 1 1
Thus, lim nra, = lim (naf)? = lim (nb,)? = <> and,

n—oo n—oo n—oo

. a,
therefore, lim = Tan = 1.

n—oo 1 P
np
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o0 o0
Hence, > a, is convergent iff
n=1 n=1 (

T is convergent,
np)P
1
that isiff - > 1 < p< 1.
p

Problem 7.19
We can see that sequence 2 cosh (2"a) where a := cosh™* (2.5)
satisfy to the recurrence a, .1 = a? — 2 since
2 (2 cosh? (2"a)) — 1) = 2cosh (2"+1a) and 2 cosh (20a) =5.
Thus, a, = 2cosh (2"«).
a) Since 2sinht - cosht = sinh 2¢ then

ant1 2cosh (2" ) sinh (20r)
aias...a, 27 cosh (2a) cosh (2a) ... cosh (2"a) sinh (2a))
2cosh (2" ') - sinh (2a)

sinh (2nt+1a)
cosh (2n+1a) . 62’1*104 + 672”+1a

= 2sinh (2a) - coth (2" a) .

Note that lim ————2% = lim =1 because « > 0.

n—s 00 Sinh (2n+1a) n—s 00 62n+1a _ 6727L+1a

Hence, lim _ O+l _ 9sinh (2a) = 24/cosh? (2a) — 1 =
n—oo @1a2...0y

125

2 Vil 1=+v21.

b) Note that initial recurrence can be rewritten in the form:
l—ﬁ:—a"+1 neN
2 ’ '

Using that we obtain:
1 1 1 a 1 2
— . e [ I ot
a1 a1as a102...a, 2 a1 2 as  Q9a3 ai1as...a,
1 /1 1 1 as 1 ai 1 1
— =+ + ..+ - =)= 1- 2+ —+..+
a1 \az asag as...ap, 2 ai1as 2 as as...ay

1 i++ 1 _% ::# 1_ﬁ :_ﬂ'
aias \ as as...an 2 ai1as...an, 2 ai1as...ay,

1
Since that lim [ — + 4.+ ——— ] = lim <a1 _ ot
n—oo \ a1 Q1G9 ai1as...ay n—oo \ 2 aias...ay
5

cosh 2ac — 2sinh 2a = 3~ v21.
Remark.

Another solutions :

We will consider this problem in general case, when
ap = a,an41 = a2 —2,n € NU{0}

and a is any real number greater then 2.

1.Then a,, = 2cosh (2"a) where a = cosh™! (g) =In ( 5

a—|—\/c127—4>.

1 1 1
Denote S(aq,ag, ...,an) = ; + aa + ... m .
1 142 1642...Un
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1

ag

a a 1 2
Since Rl k = (akH - ai) =
a1az...a a1a9...ak—1 a1a2...ak a1a2...ak
0 1 a a
and [] ax =1 then = k - ML and
e 1 ai1as...ax 2a109...0_1  2a102...0%
ay An+1
S(ay,as,...,a,) = — — ——————.
(01,02 n) 2 2a1as...ay,
a
Since —— = 2sinh (2a) - coth (2"*1a) then
a1ag...ay
2 cosh (2ar) — 2sinh (2a) - coth (2" 1)
S (a1, a2, ...,a,) = 5 =

cosh (2ar) — sinh (2a) - coth (2" @) .
and, using lim coth (2"*101) =1, we finally obtain

n—oo

lim ( + > = cosh (2a) — sinh (2a) =
n—oo \ a1 a1a9 ai1as...ayn

cosh? a 4 sinh? @ — 2 cosh asinh @ = (cosh o — sinh a)2 .

2. Both solutions above short but bad motivated. The following solution

I like more, because it is motivated solution.

1 1
First note that infinite sum — + R
g AEQi41 arag+41..-n

because increasing sequence (S (ak, Gk+1, .., Gn)), >, have upper bound.

Indeed, since a,, increasing, then

+ .... converge,

1
! +...+ ! < ! + ! +...+ ! < a
kg1 RQk41..G  Gp Q3 az_k‘*‘l g —1 Ta-1
ar
Since ap = 2 cosh (2ka) and infinite sum
1 1
Qg arar+1 arar+41..-0n
depend only from aj then we can denote this sum via S (2’“04) .
1 1
Thus, — + +.+—+...=85(p) and
al a1a9 a1as...ay
1
— e F———— + ... = 5 (2¢) ,where ¢ := 2a.
a3z asa3 a2a3...0y

Since S (ip) = ai (145 (20) <= S(20) = arS (p) — 1 <=

1
S(2¢) =2coshy-S(p)—1 then our problem now is to find solution

of this functional equation.

First note that since cosh 2 = 2cosh? ¢ — 1 then h () := S (@) — cosh ¢

satisfy to homogeneous linear functional equation h (2¢) = 2cosh ¢ - h (p).
Using representation h (¢) in the form h (@) = C (p) - sinh ¢ and identity

sinh (2¢) = 2 cosh ¢ - sinh ¢ we obtain
C (2¢p) - sinh2p = 2cosh ¢ - C () - sinhp <=

C(2p)=C(p) = C(go):C’(%)m,eN.
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In the supposition that C (¢) is continuous function (series S (p) converges
uniformly) we immediately obtain that C (¢) = C = const.
So, h (p) = C -sinh ¢ and S (¢) = cosh ¢ + C - sinh .

1 1 1
Since S (2™yp) = + + .. < —— then

Gpt1  Opt10n+2 apy1 — 1
lim S(2"¢p) =0 < C = — lim coth2"p = —1.
Thus, S (¢) = cosh ¢ — sinh ¢ = cosh 2ac — sinh 2a = (cosh o — sinh «)® and
since
2 2_4
Cosha:g, sinha = a——lz a then
2 ) 4
a—+va?—4
S(@):( 74 ) if ag = a.
a a?—4
If a1 = a then cosh2a = > sinh 2a = — and
_JaZ_4
S (¢) = cosh — sinh %
Problem 7.20%* a

a) Note that (a,) decreasing sequence (a,+1 = ﬁ < ap,n € N).

Then in particularly a, < a; = a ,n € N and since
1 1 1 1 1

an
ap41 = — =—+ — - =
1+ \V0n An 41 ap, \ an An+1 Qn, V an
btai 1 1 Xn: < 1 1 zn: S
we obtain - — = B — —_—>
Ap41 ay k=1 \ On+1 Qn k=1 V Ok
n n 1 n n+1
— = >+ - = > — 2
Jaq any1 a2 a pt1 @ 2a

2
Thus, a, < —afor any n > 2.

n
It is not enough for the proof that S, is bounded, but, using

. . 2a 1 n . .
inequality a, < — <— — > % and identity
n a

an
S
+

Ap41 B 071 kz::1 \/ak7

we can obtain better upper bound for a,,.

2a
Really, since a,, < — for any natural n > 2, we have
n

et atat o =t +Z\/fa Bt S VR
From the other hand, for any natural n holds inequality

(1) g\/mZ(n—i-l)\/m—n\/ﬁ,neN.

(Since (n+1)vVn+1—nyn=(Vn+1-/n) (2n+1+\/m> =

n+14++/n(n+1) 3
th — 1> 1 1-—
JiTii v en 2\/n+ >(n+1)vn+1l-—nyn <
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3Wn+1(vVn+1 +\f)>2<2n+1+\/ n+1>
3In+3+3y/n(n+1)>4n+2+2y/n(n+1) Vv n+1)>n—1)

1 1 ]_ n—1
Using inequality (1) we obtain > —+= Z vVE+1 >
apy1 @ Cl 2a k=
2 1
E+1)VE+ —kf) + -+ ny/n —1) =
3V2a kzl (( ) a 3\/2a ( )
1 1 2 1 1 2
-4 —=——=+ and since — + —= — ——= >0
a \/Ezl 3v2a 3\/2a (nvn = ) 2 a Va 3v2a
then > cny/n,where ¢ = .
Qn41 v 3V2a )
Thus, for any n > 3 holds a,, < ————————— and, therefore,
yih= Tce(n—1)vn-1
Sp <ar+az+ i ! — +az + ! nzl !
n > a a — Y =a a
1+ a2 k:gc(k’—21) 1 122 Cngf

Since

1
Wk hE—i+k-1)vE vhi-1 V&
(kvVE =14k -1 VE <2kvVk <= kVE—1<kVk+VE=Vk(k+1) <

n=-1l 1 2 2
k2 — k2 < k3 +2k2+ k) for k > 2 then — = _
- ) - ];::2]{;\/% \/I vn—1

< 2.

2
and a; + as + — is upper bound for S,
c

then by setting b,, := /a,, we obtain

) Van
b) Since /a1 = ——=
14+ /ay,

for sequence (b,) recurrence b,1 = liib with initial condition

n
b1 = 3 and we will attempt to find "good" bounds for b,,.
If we get success, then, square of this bounds becames "good"
bounds for a,.

1 VI+b, 1 1 VItb,—1 .

Si =" = = —
e n+1 bn bn+1 bn bn
1 1 1

but1  bn VIt Db, +1
1 1 n 1 1 n 1
then - — = — )= N
bny1 b1 g3 (bk+1 bk) 1?::1 VIt +1

(2) L — } + i ;

boy1 3 S VI+bE+1
Since b,, decreasing then b, < 3,n € N and from (2) immediately
follows inequality

1 1 1 <:>1+n< n+1< 1 N
1W+1 b1 33 37 o

n 3
f<—<:>b < —.
3 7~ by, n
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3
Using inequality v1+z <1+ g for £ > 0 and inequality b, < — n € N
n

we obtain:

1 1 1 2 - 2 2n
b1 b, by, 3 - =
brt1 bn Vv1+b, +1 1 +1 bn+4 Sy In+3

2 4n+3 _2

4n +
1 1
> 1—- -
bn+1 bl = ( )

From the other hand, since b,, > 0 then

1 4n—-3+3 1(

+
n
> (1 — ) and, therefore,
n 1
2

1
hn,where h,=1+ 3 + ..+ e

1 n 1
bnt1 b1 zcz—:1<n+1 bn>_

n 1 n 1 n
—_— <Y ==
k§1\/1+bk+1 k§1 1+0+1 2
So, = 1h<1 ! RN 1h+1< <1+n
07 n - 7 a o altn o o a
2 2 bpt1 b1 2 2 2 3 bpt1 3 2
1 1 1 n .
Sinceer§<nJ2r dg ithrg gf7then we obtain more
convenient inequality
n—hn< 1 <n+1 2 <b - 2 N 2 b <
2 b1 2 +1 B n+1 " he g
(3) < b, < 2 >1
n 7hn717n
1
1 1\ 2
Itz +ot—
Since — < L and
n n
1+1+ +1<1+ ! + ! + ! =1+1 1<2
22 T 2 1.2 237 (n—-1)n n

hy
From this inequality follows that h, < +/2n and lim — = 0.

n—oo N
2 hn, L
Since, 2 < nb, < ————— and lim — = 0 then we obtain lim nb, = 2.
1— 1 + hn n—oo N n—o00
K 2
So, inequality (3) gives us good bounds for b,,: lover bound [ (n) = —
n
2
d bound =—
and upper bound u (n) e —1
Since h (n) < v/2n then we can use more convenient lover bound for b,
2
namely we can take u (n) = ————.
y (n) = — 7471 — )
Thus, for a,, we obtain inequality — < a,, < ———————— or, inequality
n (n—h,—1)
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4 4 4
< <
(n—+v2n—1)> n?=2nV2n n?=3n/n

4
72<an<
n

which determine good bounds for a,, and asymptotic representation a,, ~ —.
n

¢) Since recurrence @, = can be rewritten in the form

Van
Va1 = —/—,
n+1 /71 T Tln
then denoting ./a,, via b, we obtain recurrence
b
(1) bpy1 = ﬁ,with initial condition b; = \/a, b*> —1
n

with the same question about good bounds for sequence (b,,) .
This is the way to solve the original problem, because sequence (b,,)
more convenient object to give answer on question of problem.
For convenience we set a := (b2 — 1)2, where b > 1.Then b; := b> — 1.
Note that from recurrence (1) obviously follows, that b,, decreasing in N

H_L T < an,n € N). In particularly this yields b,, < by = b*—1.
Let us rewrite recurrence (*) in the form important for further:
1 1+ 0, 1 1 1 n— 1
= Vitb, = =+ VIth, 1 s
bn+1 bn bn+1 bn bn

1

1 1
2) - =
( ) bn+1 bn \/1+bn+1

Hereof we obtain correlation

QA
1+ ./a,

( Ap+1 =

@ S(r )= =%
=1 \bk+1 b b1 b1 S VI+b,+ 1
From (3) and b,, < b*> — 1 follows
1 1 n 1 n 1 n

bnt1 b1 k§1 V1+bg+1 _1;::1 VI+@®?2-1)+1 b+1

1 1 n nb-1)+1
>4 —

bn+1 b b+1 b2 —1
nb-1)+1 n+1

and since 1 > AT for any natural n ,we obtain
1 N n+1 — b <b(b+1) . <b(b+1)
bpir  b(b+1) P | " n

Since for any x > 0 holds inequality v1+z <1+ g and

b(b+1
b, € (O, (;)> for any n € N then

1 1 1
< < =
Lty VIt +1l VIH0+1
2
2 1 1

(4)

< < = d
botd S Vith +1 2™
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2 2 7 2n
b, +4  b(b+1) CAn+b(b+1)

+4

(- ghitta) -1 (- M)
(b+1)

Thus, for any n € N holds inequality

1 b(b+1) 1 1
5 —(1- —.
(5) 2 in ><\/1+bn+1<2
Using (5) and (3) we obtain
1/ b(b+1) w) < 11 PRI
2 4 " bpt1 b1 2

1 b(b+1) 1 1 n 1
(6) 2(n—4-hn)+bl<bn+1<2+bl ,

1 1
where h,, =14+ = + ... + —.
2 n
IR
hn —a cee Y
Since — < 22 n? and
n n
1+1+ +1 <1+ ! +...+ ! =
22 T 2 1-2 77 (n—-1n

1 hy, 2
1—|—1—<2then<\/7.
n n n

hy
From this inequality follows that h,, < +/2n and lim — = 0.

n—oo N

LetCZZmax{O’b_Q} theng—I—a < w and

from (6) follows inequalities

1 b(b+1) 1 b(b+1) 1 n+4c
ORI P R T A P

which implies
1 b(b+1) h, 1 1 1
— 1(+).><<(1+C>'
2 n

2 4 n n nby,
. .1 b(b+1) h, Ty . 1 cy 1
Slncenlirrgo2<1—4.n_n)_n15202(1+n)_2
hen lim — = = as well.
tenninéonbn 2aswe

Thus, lim nb, = 2 and we finally obtain that lim n2a, = 4.

Problem 7.21 (One asymptotic behavior)(S183)
Pr1
2

1
Tp=Tp_1—22_1,n€Nand xg = %) = —, where p > 1.
p

Let xn:p?n,neNU{O} then p, = pp—1 — —
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Since 0 < z,,n € NU{0} (zo € (0,1) and
Tp—1 € (0,1) — Tp = Tp—1 (1 - CI?nfl) S (0, 1))

1 1 n 1 1
hn LoD

n 1 n 1 1 1
> 3 =n < —>p+n < ,< ——,neN.
=11 — Tp—1 =1 1—0 Ty n+p
1 1
Moreover, since xyp = — then z,, < ——, n >0 and
p n+p

for n > 1 we obtain

—ZZ(— )=Z§
Ln Zo k=1 \ Lk Th—1 k=1 1-— Th—1

z:: ! kzz:l ( k—2 +P>

k=11

k—1+p
1 n
n—|—2k 2+ <7’L+Zm_n+hn, where h Z_:

??‘\»—t

1
Hence — < p+n+ h,,n € N and, since* h, < /n+1, n €N

n

1
then—< +n+ n+1<:>—<x < —.
o, P vn n+yn+p+1 " T n+p

¥(forn >3 wehaven? >2n+1 = n?>2\/n(n+1) <
1 1
vn+l+yn<n+1l < < =
vn n+l Vn+1+n

Bng1 —hn <Vn+1—ymnand hy =1<V14+1,hy < V241,
h3<\/§+1)

8. Inequalities and max,min problems.

Comparison of numerical expressions.
Problem 8.1(Met. Rec.)
a) 31 < 321 =255 < 256 = 161 < 1714,

b) 51318 > 51218 — 99-18 2162 2161 _ 27 23 — 19823 > 12723
1 1
c) Particular case of inequality nn >mm if 3 <n < m.

1
Suffice to prove nn | N\ {1,2}.
d) Answer: tan34° > 3
1 4° 1
[t g UVSHE 4 g,
1—1/ftan4° 1-1/V/3-t

tan4° = tan;r—5 > — then

1/\f+tan(7r/45) - 1/V/3 + /45

Since tan34° =

tan 34° =

1—1/V3tan(r/45) = 1—-1//3- 7r/45
1/V3+7/45 2 o
—_— > - 3+f>277<:>
1-1/V3-7/45 3 V3 15 45/3
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=+ 4;\[ V3 = 7(3v3+2) >45(2v/3-3).
We have 3 (3v/3+2) >45(2v/3-3) <= 3V3+2>15(2V/3-3) <

3V3+2

2ng?)>15 — (3V3+2)(2v3+3) >45 < 13V3+24>45
13v3 > 21 <= 169-3 > 441 <= 507 > 441.

e) Since 1 € (0,7/2) and 1 > 7/4 then sinl > cos 1.

1 1 1
Also since sin§ < 3 then cos1 = 1 — 2sin? > 1-2- <2>

1 1
Thus, sinl > - (Or since 1 > 77/6 then sinl > sinw/6 = 3

1
From the other hand logs v/2 = 3 log3 2< 3

1
Hence, sin1 > 3 > logs v/2.

f) Solutionl.
Since n — 1 > 2 then log,_;n > log, (n+1) <= 1 > log,(n—1) -
log, (n+1) <=

1 1 1 1
1>lognn(1—) -log,, n (1+n) — 1>(1+logn(1—n)> <1+logn(1+n)> —
1 1 1 1
1>1+log, 1—7 +log, (1+—)+log, (1 ——=)log, |1+ -] <=
n n n

1 1 1
0 > log,, (1 — 2) +log, | 1— ) log,, (1 + >
n n

where latter inequality holds because

1 1 1
log,, (1 - 2> < 0,log,, (1 — ) < 0 and log,, (1 + ) > 0.
n n n

Solution2. ,
1 —1)+1 1
By (2AGM) log,, (n — 1)-log, (n +1) < ( og,, (n );L og,, (n + ))
2
1 21 1 2_1q ] 2
log,, (n —1) -log, (n+1) < M and O8n (n ) < O8n M _
2 2 92
2log, n

=1 then log,, (n — 1) -log,, (n+1) <1 <= log,_;n >log, (n+1).

h) Using Math Induction we will prove that for any natural n holds

n

. . n
inequality n! > (*
Note that for n = 1 this inequality obviously holds.

For any n € N assuming n! > (%) we obtain (n + 1)! > (n+ 1) (%)

and o
ny\m" n+1\" n®  (n+1)"
(n+1)(§> >( 3 ) <:>3—H>W<:>
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1\" 1\"
3>(1+) :3>e>(1+).
n n

Applying inequality n! > (%) for n = 300 we obtain

300 300

Remark.

1 n
Another way to prove inequality 3 > ( 1+ — without reference to e.
n

We will prove (using Math Induction) one useful inequality, namely:

For any positive real a and any natural n such that na < 1 holds inequality
(1) (14 a)" <1+na+n?a?

Proof.

For n =1 inequality obviously holds.

Let n € N be any such that (n + 1)@ < 1. Then no < 1 and assuming
(14 )" < 1+ na + n%a? we obtain

(14+a)"™ < (1+na+n?a?) (1+a)=n’a®+(n? +n) a®+(n+1)a+l.
Since na < 1 we have n?a® = na - na? < na? and, therefore,

n2a® + (n® +n)a® < (n? +2n)a® < (n+1)% .

Hence, (1+ )" <1+ (n+1)a+(n+1)a2

1 1\"
Applying inequality (1) to o = — we obtain (1 + ) < 3.
n n

g). Easy to see that (n!)> =n" for n = 1,2 and for n = 3 we have
(31)? = 36 > 33. We will prove that (n!)> > n" for any natural n > 3
using Math Induction in form of Multiplicative Reduction, that is
suffice to prove inequality

(n+1)?*  (n+1)""

(n))? n

1 n
<:>n—|—1><1—|—> .
n

1
Latter inequality immediately follows from 3 > | 14+ — ] ,or can
n

be proved independently with usage of Multiplicative Reduction,
namely we have

1 n+1
1
n+2 1 ( +n+1)
= >

n+1 n+1 ( 1>n
1+~
n

1\" 1 " 1 1
1+—) > (14— = 1+->1+ .
n n+1 n n+1
i). Let a, := \/2—1— 34++vV2+...and b, := \/3+\/2+\/3+...

(each use m square root symbols)
We have system of recurrences:

{ an::% ,n € N where a1 = v/2,b; = V3.

—

Note that a; < b; and b; — a; < 1 and we will prove using Mat. Induction
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more stronger inequality 0 < b,, — a,, < 1 for any natural n.
1. Base of induction:
0<V3-v2<1.
2. Step of Induction.
For any n € N in supposition that 0 < b,, — a,, < 1 we we have
bn+1 —Opy1 = \/3+an _\/2+bn =
1= (by —an)

<
V24, +vV3+an V2+3

< 1and byy1 — ang1 > 0.

Proving inequalities
Problem 8.2
Since a + b+ ¢ = 0 then due to symmetry of inequality we can assume
that sign (a) = sign (b) . Then |c| = |a + b| = |a| + | b] and

ot =lol - o+ 1) < (2L oy = QLT
le® _ 1max{|a|3 B[, |c|3} because |a|, | b] < |a] + | b = |¢| .
4 4 -
Problem 8.3(Met. Rec.).
We have
(1—x)(1—y)(1—z)—%: (;(x+y+z)>+xy(lz)+z(y+x)220.

Problem 8.4(Problem 6 from 6-th CGMO,2-nd day,2007).
Due to symmetry with respect to b and ¢ we can assume that b > ¢ and
denoting = := Vb + /¢,y := Vb — \/c we obtain x >y > 0,z +y < 1,

2 2 2 2
b—c:my,b—&—c:x ;ry ,azl—x ;Ly ,
and original inequality becomes

2 2 2.2

7+ T
(1) \/1— L+ o<,

1
where z € [2, 1} and y € [0,z].

2 2.2 2(9 _ 42
Since max (_y+x y ) = max (_y(az)) = 0 then

ye[o,l‘] 2 yE[O,J:] 4

4
22 +y2 222

(1) = maX\/l— +27 4 2<V3 =
y€[0,xz] 2 4
2 2 2,2 2
l—m——i—max —y——&—wy +12<V3 — l—x——i—xﬁx/g,
2 yel0,2] 2 4 2

where latter inequality holds because by Cauchy Inequality

(©1985-2018 Arkady Alt 107



Math Olympiads Training- Problems and Solutions

(12+ (v2)°) ( 1—f>2+(j§)2 :3~<1—z22+$22>:3-

2
Since in (1) equality occurs iff y =0 and 1/1 — % I V2 —

2 v2
y=0and z = % then original inequality becomes equality iff
1
a=b=c=-.
3
Remark.

This inequality is sharp variant of inequality v/a + vb + /¢ < V/3.

Problem 8.5(Met. Rec.)

"o, — Qo noa; + ajrq — (@1 + Gigo n a; + a1
We have > — e ‘ i1 — (Gt i+2) =Y (— H 1) =
i=1 Qi+1 T air2 i3 Qit+1 + Qiy2 i=1 \@i+1 + @42

) it i > 0 because by AM-GM Inequality
i=1 ai+1 + ai~‘r2

Z 7 1+1 Z nn H 7 7+1 —n
i=1 Qi1 T Qiy2 i=1 Qit1 + Qi42

Problem 8.6(Met. Rec.)
3

a
Let S =) ————.
¢ §a2+ab+b2
Since o’ —a3_b3+b3—a—b+L
a2—|—ab+b2_a2+a%+b2_ az—gab—i—b2
b
ens=2 |a +a2+ab+b2> D3 e B2
and, therefore,
a®+ b a® — ab + b2 1 2(a+b+c)
286=Y ———— = b) —>-—- > b)) = —
CZ:yCaQ—i—ab—&—b2 CZ:yC(a+ )a2—|—ab—|—b2_Czyjc(aJr )3 3

a? — ab+ b2 1
77 s
a?4ab+0b%2 3

Problem 8.7(Met. Rec)

because — (a—b)*>>0.

. ) . 515 15 2,12 .2 a® + 0% + ¢
By Chebishev’s Inequality we have a®+b°+c¢> > (a +b"+c )f
343 3
anda2+b2+c22ab+bc+ca,%2abc.

Problem 8.8(Met. Rec).

Solution 1.

Applying inequality (z +y + 2)2 <3 (x2 +y? + 22) , ,y,2 € R to
(z,y,2) = (VAa+1,V4b+1,v/4c + 1)

we obtain

(Via+ T+ VI T 1+ VAc+1)° <3(4a+1+4b+1+4c+1) = 21.
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Solution 2.

First note that

Vida+ 1T+ VAb+ 14+ Vic+1 <21 «<—
(Via+ T+ VI T 1+ Vic+1)° <21 <

da+14+4b+1+4c+1+> 2¢/(da+1)(4b+1) <21 —

cyc

> 2¢/(da+1)(4b+ 1) < 14.

cyc
Since, by 2AM-GM Inequality
2\/(4a+1)(4b+1) <4a+1+44b+1 =6 — 4c then

S 2/[a+ 1) (b +1) < (6 —4c) =18 — 4 = 14.

cyc cyc

Solution 3.
Let t > 0 be some undetermined real parameter.
Then using 2AM-GM inequality we obtain

1 1 7+ 31
Czyjcw/4a+ =%§c\/t(4a+1)§2—ﬁ§c(t+4a+1): N

So, for any ¢ > 0 holds inequality

743t
1 da+1<
(1) gc\/ Wil
74 3t .
To reach upper boundT\/Ewe should claimt =4a+4+1=4b+1=4c+ 1.
7
Sincea+b+c=1weobtain3t=4(a+b+c)+3=7 < t=_.

3
7
In particular for ¢ = 3 inequality (1) becomes

7
T+3- =

SViaFi< ——3 =21

cyc 7
2/~
3
Another ending.
7+ 3t

74 3t
We have Vida+1< <— v4a +1 < min
Czy;: - 9/t Czy;: T >0 24/t

74 3t 1 7 [7
d =—|—=+3Vt| >,/— 3Vt =21 with lity iff
an N 5 <\/7E \f)_ i Vi with equality 1

7
— =3t — t=-.

Vi 3

Problem 8.9(Met. Rec).

Since (z1 + 2 + ... + T, + 1)2 >4 (xy + a2+ ... +x,) =
(x1+$2+...+xn—1)2 >0

and z; € [0,1] = x; > 27,i=1,2,...,n we have

(T1+ T2+ o+ 1) > (21 F 2+ o+ xn) > 4 (2] + 23+ 22).

Problem 8.10(Met. Rec).
Solutionl.

First note that 23z + 32 + 23y > 2yz (v +y + 2) <=
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22 2 22
—F+ =+ —2z+y+=z
Y z T

z
Applying Cauchy Inequality to triples ( ,—, ) s (WY, VZ T
VI VE Ve (V9 V2 V&)

we obtain

x? oy 2P T y z

Z o424 4z > (. <. .
(y+z+x>(y+z+x)_<\/?j \/§+\/2 vz + ~
2?2 22
—t+—+—2zx+y+=z

Y z x
Solution2. )
Note that for any real a and real b > 0 holds inequality % >2a-b (=
(a—b)*>0).
2 2 2

(

Then x——l—y——k— >2y—z+2y—z+2z—zrz=x+y+-=z
y z x
Problem 8.11(Met. Rec).
Noting that T1y1 + Lok _ G (z1+22) Toy2 + T1Y2 _Y2 (z1 + x2)

riyr+ 21y @ (yr +y2) Tays +x2y1 T2 (Y1 +Y2)
and using Weighted AM-GM Inequality we obtain that

y1 (21 + z2) y2 (x1 + 2) Tt
x1 T2 —) " I1 — T2
1y + 332!/1) (332312 + 3313/2) P (y1 +y2) x2 (y1 + y2)
T1Y1 + T1Y2 TaY2 + Ta2y1 - r1 + X2

for any real positive 1,22 Y1, Y2-
Thus, in fact, all solutions of inequality of the problem are solution of equa-

tion

($1y1 + £62y1)$1 <332Z/2 + 961y2>w2 =1
T1Y1 + T1Y2 TaY2 + Tay1 -

By condition of equality in weighted AM-GM Inequality we obtain

Ty + Tay1i  Toyz + T1ye yi(z1+x2)  y2(z1+22) Yi_ Y2

T1Y1 + T1Y2  T2Y2 + T2y1 x1 (Y1 +12) @ (y1 +y2) T X2

©

Thus all solution represented by quads (21, z2,y1,y2) = (21, 2,tx1, tx2) ,where
z1,22t € (0,00).
Another variant of previous solution..
Py )
Denoting u; := ! and v; := Yi i1=1,2
1+ X2 Y1+ Y2
we obtain that u; + us = v; +v9 = 1 and

iyt Toyr Y1 (B +32) v Toyp +T1y2 V2

= = —, —=— 2= = = Then inequality
riyr+ iy w1 (YY) un Taye Ty up

(wlyl +x2y1>“ <w2y2 +m1y2)m >1 becomes (vl>u1 (”)uz >1
T1y1 + T1Y2 Zoy2 + Tay1 B U1 Uz B
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Since by weighted AM-GM Inequality

v “ v uz v v
1 2 1 2
— — <f'U1+f'U,2_—’U1—|—U2_—1
U1 u (51 U2

Ul U
v v ., . . o U v
then (1 ) (2) =1 and it is possible iff e
Ui U2 Uy U2

(condition of equality in AM-GM Inequality).
That is, (v1,v2) =t (u1,u2) <= (y1,¥y2) =t (1,22),t € (0,00).
U1 U2
And one more proof of inequality (vl (1]2) <1
U1 (15)
(without weighted AM-GM Inequality).
First note that

v Uy v ug v Uy v 1—uq v Ul
Ui U2 Ui U2 U1v2 V2
0

Applying Bernoulli-2 Inequality (1 +¢)* <1+ ta,t> —1, a € (0,]

V1U2

tot = —1land a =uy
U1v2

we obtain

U1
V1U2 V1U2 V1U2 V1U2 Ug (V1 + V2 U2
<1+ —1)u =1-uj+——= = uas+ = ( ) = —.
U102 U1v2 V2 V2 V2 V2

Problem 8.12(Met. Rec).
Let S, = Y- \/2k —2y/F(k — Dand b, := \/n (n + 1).

k=1
First note that S; = v/2 = by.
Also note that Ss = V2 + V4 — 2¢/2 > /6 = bs.
Indeed, V2 + V4 —2v2> V6 <= 14+vV2-v2>/3 —
2—\/§>(\/§—1)2 = 2-/2>4-2/3 <= 2/3>24+ V2 —
V6>V2+1 <= 6>3+2/2 < 3>2V/2 < 9>8.
And we will prove that for any n > 2 holds S, — S,,—1 > b, — b,—1.

Indeed, \/271—2\/71(71—1) >nn+1)—y/nn-1) <

) n?—(n*—n) _ n*—(n*—n?)
2n—24/n(n—1) > 2n*-2nvn? -1 <~ > =
n++nn—-1 n24+nvn?-—1

n n? 1

1
> — > —
n+y/nn—-1) nZ4+nyn?-1 n+ynn—-1 n+vn?-1
n+vVnZ—1>n+nn-1) < Vn+1>n.

Since S5 > by and for any n > 3, assuming that S,_1 > b,_1 we obtain
Sp = (S — Sn-1)+Sn-1 > (b, — by_1)+b,—1 = b, then by Math Induction
we have S, > b, for any n > 2 and, therefore, S,, > b,, for any n > 1.

Problem 8.13(Met. Rec).
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k
Let sy := Z ,n and f (z) := /1 — x2 then

2
Fpi= 3 a 1_< im) > (s —sk-1) V1 =87 = 3 (55— sx-1) f (1)

k=1 i=1 k= k=1
is Riemann sum for function f (z) = /1 — 22 and partition
0=s0 <51 <82 <...<8, =1 of the segment [0,1].

Since, f(x) | [0,1] then

> (8K — sk—1) f (sk) <f\/1—x dx =[x = sint;dx = cost - dt] =

k=1

/2 17/2 1 sin2t\™? & 4
2tdt =~ [ (1 2t)dt = = (t =—< -

[ cos 20f + cos 2(+ 2)0 4<5

because 57 < 16.

Problem 8.14(Met. Rec).
(a1 + as)’

5 — (a1 — a2)2 > 0;

If n = 2 then ai1as + asa; <

2
If n =3 then 1as + asas + aza; < W <=
(a1 — a2)® + (a2 — a3)” + (a3 — a1)* > 0;
Let n > 3.
Due to cyclic symmetry of the inequality we can suppose that
min{ay, ag, ...,an} = a.
Then we have
a1as + asaz + ... + Gp_1an + apar < arao +asag + ... + Ap_10y + Qp_3a, <

2
n L (a1—|—a2+...—|—an)
> oai- Yy a; <
i—odd ’ j—even ! 4

because in the each term a;a;41,7 =1,2,....,n—1
and a,,_3a, one factor has odd index, other has even index.
Equality occurs, for example, if a; = ay and all other a; =0, ¢ =3,...,n

Problem 8.15.(Met. Rec).Original setting.

Let S = S(a1,a2,...,an) == >, |a; —a4|.Since |a; — a;] = 0,3 € {1,2,...,n}
1<i<j<n

then Z Z la; —aj| =25 <= S = Z Z la; —aj| and, therefore,
1=17j= 1=1j=

S (a1, as, .. an) is independent from permutatlonb of (a1, az,...,a,)
and for any real a holds

S(a1+a,as +a,...;a, +a) =S (ar,a9, ..., an).
Thus, max {S (a1, az, ...,an) | a1,02,...,a, € Rand |a; —a;| <2,4,5 € {1,2,....,n}} =

max {S (a1,a2,...,a,) |0< a1 <az < ... <a, <2 }.

n

n
Since0 < a1 <as <..<a,<2thenS= > |a,—ajl= > (aj—a;)=
1<i<j<n 1<i<j<n
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n—1 n n n—1

é]gaj oY o a=>(G-Da;— > (n—i)a; =

i=1 j=it1 =2 i=1
n—1 n—1
m—1an+ > (—1aj—(n—1)ar— > (n—1)a; =
=2 i=2
n—1
(n=1)(anp—a1)+ > (20 —1—n)a,.
i=2
n—1
If n=2then . (20 —1—n)a; =0 and
i=2
1 1
Sz5(2—1)(an—a1)§§(2—0):1.

Let n > 3.Since a, —a1 <2-0=2and2i—1-n>0 < i > [g}—'_l’

n4l1—2i>1 & i< [g} then

n—1 [%]
S=n-1D(a,—a1)+ > (2i—1-n)a;—> (n+1—-2i)a; <
(5] =
n—1
2n—1)+2 > (2i—-1-n).
=(Fn
Consider now two cases:
n—1 2m—1 2m—1
1. Ifn=2mthen > (2i—1-n)= > ((2i—1-2m)= > (2@—-m)—-1)=
i:[%]+1 1=m-+1 i=m-+1
m—1
S (2i — 1) = (m —1)? and, therefore, S < 2 (2m —1)+2(m —1)* = 2m2.
i=1
! n—1 2m—2 2m—2
2. Ifn=2m—1then > (2i—1-n)= > (2i—2m)=2 > (i—m)=
=[5} = =

m—2
2 > i=(m—2)(m—1) and, therefore,

i=1
S<2(2m—-2)4+2(m—-2)(m—1)=2m(m—1).
2m? if n =2m
Thus, S o m—1) it n = 2m —2

. n? 2m? if n = 2m n’
Since, {2} = { 2m(m—1) if n=2m —1 then S < {2} .

2
Noting that S (a1, as,...,a,) = {T;] for

a; = ag = ... :a[%] :O’G[%]Jrl = ... = 0an =2
n2
we conclude that max S (a1, as,...,a,) = 2} .
n o n n2
Hence, Y > |a; —aj| <2 {} <nZ
i=1j=1 2

Problem 8.16 (MR S97as modification)
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2
Let t := (z122...x,) " then by AM-GM Inequality
1+ 2o+ ... +x,

1= > Yrixe..2, = t<1.

) n
Since

2., .2 2 2 2
zi+as+. 4o, =@+t +z,) -2 Y mzy;=nt-20 ) xw;
1<i<j<n 1<i<j<n

and by AM-GM Inequality

1

= 2
> (n) 0w (3) _ <n) <ﬁ xZ_1> n(n—1) _
1<i<j<n 2) \i<i<j<n 2) \u=a

Z SCi:L‘j>
—1) n 2 -1
% II =/ :%thenx%—&-:c%—&—...—km%SnQ—n(n—l)tand
=1

wiad.a (2 +ad+ .. +a22) <t"(n®P—n(n-1)t),
Thus suffices to prove

t"(n?—nmn-11t)<n < nt"—(n-1)t"" <1 =

(n— 1)t —nt" +1 >0 for any ¢ € [0,1].
Latter inequality holds because

=Dt —nt"+1l=m-Dt"(t-1)—-("-1) =

-1 ((n=—Dt"—(Q+t+..+t" ) =1—-t)(L+t+..+t" = (n—-1)t") >
1=ty (nt"t—(n-1t")=t""11-t)(1+(n—-1)(1—1¢) >0.

% Problem 8.17 (W6 J Wildt IMO, 2014)
3

ey x
Let S = _
¢ (XN) ngl Tn + 4$n+1

x if series converges and Sy (xn) = oo if it

diverges. ~
Let Dy = {zn | zny € Dy and S (zn) # oo} .Since D; isn’t empty
(because for for instance if z,, = ¢"~!,n € N, where q € (0,1), we have
oo 3 oo q3(n—1) oo q2(n—1) 1
Z N = Z n—1 no = _ 42
n=1 Tn + 41’n+1 n=149d + 4(] n=1 1+ 4(] (]- + 4(]) (1 q )
then inf {S (xy) | xy € D1} = inf {S(XN) | xn € 51} .

Let S := inf {S(XN) | xy € 131} . For any xy € D; we have

S ) = 55— SRS D
Xy) = - _
" n=1Tn + 4$n+1 1+ 4o n=2 Tn + 4$n+1
3
i Yn 1 2
+ 22 = +a5- S ,
1+ 4z, 2 nz=:1 Yn +4Ynt1 1 +4xo 2+ S (yn)
where y,, 1= x"“,n eN.
T2
. ~ S (XN) 1
S eEDI(l=y1>y2> ... >yp > ...and S = .
ince yn € D1 (1=1y1 > 92 Y and S (yn) 2 1t 4332)
then S (yn) > S and, therefore, S (xy) > + 238 =

1+4£C2
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S > + 228 — S >

1
1+ 4o (1+4x9) (1 —23)

We will find p := max h(z), where
z€(0,1)

h(z):=(1+4z) (1 —2?) = —4a® — 2? + 4z + 1.
Since b/ (z) = —122%2 — 2z +4 = —2(3x +2) (22 — 1) then

1 1 4
= zren(z&}i)h(ft) =h <2> = Z and, therefore, S (xy) > M =3

Since S (xy) = for z, =¢q" 1, neN, g€ (0,1),

(1+4q) (1 —¢?)
then for g = 5 we obtain

& z3 1 4

S (@)

% Problem 8.18(SSMJ 5345)

Indeed, |acosx + beosy| < \/a2 + b2 + 2abcos (z +y) <

(acosz 4 beosy)® < a2 + b2 + 2abcos (v +y) <

a? cos? x + b? cos? y + 2abcos x cosy < a? + b% + 2abcos (z +y) <=
0 < a?sin? z + b%sin’ y + 2ab (cos (z + y) — cosz cosy) =

0 < (asinz — bsiny)>.

Equality occurs iff asinz — bsiny =0 <= asinx = bsiny.

Let ¢ := 2 + y,then sinz +siny = — + 5 =bc+ca <=
a
sinz = kbe,siny = kca and siny = sin (¢ — z) <=

siny = sinpcosz—cospsinz <= keca = sinpv1 — k2b?c?—kbccos p <

(kca + kbecos @) = sin? ¢ — k2022 sin? p <
E2c%a? 4 E2b%c? cos® ¢ + 2abc? cos p = sin? ¢ — k2b2c?sin® ¢ <=
sin? o
c2(a? + b2 + 2abcos )’
b?sin? ¢ _ (a+bcos ©)°
a2 + b2+ 2abcos a2+ b2 + 2abcos
(b + acos ¢)*
a? + b2 + 2abcos’
(a + beos )’ <1 and (b + acos ¢)*
a? 4+ b2+ 2abcosp a? + b2+ 2abcosp’’

k2c? (a2 + b2 + 2ab cos <p) =sin®p <= k%=

Hence, cos?z =1 —k2b?c? =1 —

and cos?y =1—k?c%a® =

(Obviously that

% Problem 8.19.
Solution 1.
Lemma 1.
For any positive real z and any natural n holds inequality
(1) x”+x”*1+...+x§x”+1+1‘
n 2
Proof.
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Since (2"T17% —1) (a2 —1) >0,k =1,2,...,nand dy (znti=h —1) (zF —1) =

=1
S (" 1k — g tR) = 3 (1) — i (% +am i 7E) =
k=1 k=1 k=1

n (a4 1) -2 Z”: 2% then n (z+! +1) — i >0 < (1)

k=1
Lemma 2.

For any positive real x and any natural n holds inequality
2) x”+m”1+...+x+12<x+1>n
n+1 2

Proof.(Math Induction by n).
For n = 1 inequality (1) obviously holds.
Let n € N. From supposition that (2) right follows

z+1\" _atta o]l ol
( 2 ) = n+1 2
"+ 4+l 41 < AN LS Ry |

n+1 2 n+2 '

Indeed,
m+2)(z+1)(a"+a" '+ .. +z+1)<2(n+1) (@" M +2"+ .. +z+1) =

and inequality (1) yields

(n+2) (2" +22" + .. +2z+1) <2(n+1) (@"+2"+.. +z+1) =

22"+ ..+ 2) <n(z"t+1).
Since by AM-GM Inequality ¥/n! <

n 2
1\" moppmet 1 "
mg(n;— ) and by (2) " +n" "+t Z(n-ﬁ- ) then

1+2—|—...—|—n_n—|—1

m+1 2
m m—1 n mn
n"™ +n +..4+n+1 > n+1 Z(n!)m
m—+1 2
Solution 2.
Lemma 1.

For any a € [0,1] and n € N holds inequality

B) (1+a)"-(01-a)">2na.

with equality condition in both inequalities a =0 or n = 1.

Proof.

By inequality Bernoulli (1 + a)k >1+tka for any k= 1,2,..n—1 we obtain

(1+a)" —1=a<(1+a Yh(4a)" +(1+a)+1)2
a((l+(n—1)a)+ 1+ (n %) a)+.+(1+a)+1)=an+a(l+2+..+(n—-1))) =

-1
a(n—i—n(nQ)a =an+ %aQ and

1-(1-a)" )™ 1)+(1—a) 2t (l—a)+1)>
a((lf(nfga)Jr(l—( —2)a)+..+(1-a)+1)=an—a(l+2+..+(n—-1))) =
2

an — ——a”.

’:\_/+

Il
)
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Thus, we have two inequalities

-1
(4) (1+a)n21+na+%a2 and

-1
B5) (1-a)"<1—na+ %a% with @ = 0 or n = 1 as equality
condition
in both inequalitiws.
For any natural n and any a € [0,1] from inequalities (4) and (5) immedi-
ately

follows inequality (3).

Lemma 2.
For any natural n and any non-negative  and y holds inequality
(6) m"—l—x"‘ly—i—...—i—xy”_l +yn - (J?—l—y)n

n+1 2
Proof.
Due symmetry we can suppose that z < y and excluding trivial cases
x =0 and z = y we assume that 0 < z < y.

Then for a := y—= holds 0 < a < 1.
y+z

Plugging this a in inequality (3) we obtain

o n+1 o n+1 o
1+ 2 —(1-% 22(n+1)y =
Y+ y+x

2n+1 y—2x yn_xn <Z’+y>n
S - >2m+ 1)L — > —
iy ¥ )220 A (n+1)(y—a) 2
mn+xn—1y++xyn—l+yn S x+y>n

n+1 - 2
In particularly, if y = 1 we obtain inequality
7 x"+x"‘1+...+x—|—12 r+1 ”.
n+1 2
Since by AM-GM Inequality

W§1+2+'"+n=n+1 n!§<n+1>
_|_
2

n 2

m m—1 1
and by (7) notn mi_l tnt z

m m—1 n m
(n +n +...+n+1) Z<n+1> > ()™
m+1

Problem 8.20(Met. Rec).
Note that (n + 1) cos T ncost>1 =
n+1 n

™
1
(n+ )cosn_’_1

n+1 T n+1 n T n
Ccos — > —CcosS— — —.
s n+1 T T n

—(n—|—1)>ncosz—n —
n
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1
let g (x) :== co;x - E.We will prove that g (x) decrease on (0,7/2).

Let 0 <z <zxz+h<m/2
cos (z + h) 1 cos T

Th — = — —
en g (z +h) =g (x) T
wcos(z+h) — (v +h)cosz+h  x(cos(x+h)—cosz)+h(l—coszx)

1
T

x(x+h) x(x+h)
h h
—2zsin <$ + 2) sin 5 + 2hsin® g —2z Sinxsing + 2h sin? g
xz(z+h) < x(x+h) B

4sinx ﬁtang — EsinE
B 2 2 2 2

< 0 because

xz(z+h)
> si dt $>x
— > sin — and tan — > —.
2 2 2 2
Si T <7rth T > (W) =
ince — then —_— —
n+1 n g n+1 g n
n+1 s n+1 n T n
cos — > —cos — — —.
T n+1 T T nomw

Finding maximum,minimum and range.

Problem 8.21(82-Met. Rec).
Solution 1. )
22 1 -1
First note that 63;2 — 72—:_ 3 = 633236_ 7$)+ 3 > 0 for all real x because
discriminant of quadratic trinomial 622 — 7x + 3 is negative.

L2422 —1 (z—1)*
Also note that min ey = T e e
ma (-1’ (because (e~ 1)° 0 <= z=1and
B x o\ ) _ = -
reR~{1} 622 — Tz + 3 622 — Tx+3
z —1)?
M > 0 for any z € R\ {1}).

Since 622 — 7z +3=6(z —1)* 4+ 5 (z — 1) + 2 then for
1
x € R\ {1}, denoting ¢ := 1 we obtain
T —

(z—-1° (z—1) B 1
622 —Tx+3  6(x—1)°+5(x—1)+2 6+5t+2t2
and, therefore,
—x? 42z -1 1 1

min ——————— = —max =—— :
a£1 622 — Tz + 3 t#0 6 + bt + 2t2 r&(r)l(6+5t+2t2)

Since 6 + 5t + 22 = 2 (t + 5/4)* + 23/8 then min (6 — 5t +21?) = 23/8.

—z? 422 -1 8 1 5 1
Thus, ?2?57754_3 =33 and is reached if 1= "1 = = £
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Solution 2.
2 —2x+1

Let h(x) := 627 7o 13
Since Range (h(z)) = {t |t € R and h (z) = ¢ is solvable in z € R}
and 622 — 7z + 3 > 0 for any = € R then

h(z) =t < 2? -2z +1=1(62% — Tz +3) <
(1) (6t—1)z?—(1t—2)x+3t—1=0.
If ¢ = 1/6 then equation (1) becomes — gx — % =0 < z= —g.
So, 1/6 € Range (h(x)).
If t # 1/6 then quadratic equation (1) solvable iff it’s discrimianant
D > 0,that is iff (7t —2)2 —4(6t —1) (3t —1) >0 <= 8t — 2312 >0 <=
£(23t — 8) <0 < te[0,8/23]\ {1/6}.
Thus, Range (h(z)) = [0,8/23] and, therefore,

min —5 T2 b= S
veR 622 — Tz +3 z€R o223
Problem 8.22 (83-Met. Rec).

Note that

msg%{min{x,l/%y—k 1/z}} =max{t|¢t>0and 3 (z,y > 0)[z,1/y,y + 1/z] > t}.
@y

Also
>
vt x<71jt
min{z,1/y,y+1/z} >t < y>t till_/x<y
> =
y+ljzzt t—1/x <1/t

t—1/t<1/z <1/t )
{ P lp<y<ift — t—1/t <1/t <= 12<2 <= t <2
maxt = /2 and attained if z = /2,y = 1/\/5

Problem 8.23(58-Met. Rec.).

Let remy, (n) be remainder from division n by k. We will prove that

max{remk (n) " ke {1,2,...,n}} — {”21} .

Note that remy (n) =n — k [%] and n = {g] + {

n—1
2

J+1

n—1
Also note that suffices to prove inequality remy (n) < [ 5 ]

for any k < [g] .

Indeed, since k > [g]—&—l = k>g <~ n—k<kandn=1k+(n—k),

wehaveremk(n):n—kgn—({%]—|—1) = [n21] .
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n—1

Let 1<k< [g} then remy, (n) < —

B[] o< 5] —

2] +1

[ onsifl] = B < [ -
]
|

n+ 2k

<n <= n+2k<2n <=

n—1
2

-1 -1
sincefork:[;}+1wehaven=1-k+[n2 ] and [n2 }<kthen

and

Thus, for any k € {1,2,...,n} holds inequality remy, (n) <

max remy (n) = [”21] .

Remark.

Here was used the following properties of [z] (integer part of x):
1.a<b = [a] <[}].

Proof.

Since [a] < a and a < b then [a] < b = [a]E{tftEZandtSb} and,

therefore, [a] < max {t cte€Zandt<bp = [b

1
2. For any n € Z holds identity n = [g] + {n;r } .
Proof. ) ok ok 1 1]
n n+ +
Ifn—2kthen[2}+{ . }—[2_+[ —| =

oo )

n] N {n+1] _ '2k+1] N '2k+2} _

Ifn =2k +1 th [f
n + en 5 5
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(R~

3. For any € R and n € N holds identity {m] = [E] .
n n
Proof.z .
p = [—} thenp < —<p+1 <= np<z<np+n.
n n

Sincenpe{tfteZandth} thennp§[x]:max{tfteZandth}

and we have np < [z] <z <np+n =

np < [z] <np+n <= p§%<p+1 — {[?]:p.

Problem 8.24

Note that F (x,y,2) = max {|cosx | + |cos2y|, |cosy |+ |cos2z|, |cosz |+ |cos2z|} >
(lcosz | + |cos2y|) + (Jcosy | + |cos2z|) + (|cos z | + |cos 2z|)

3
(lcosx | + |cos2z|) 4 (|cosy | + |cos2y|) + (|cosz |+ |cos2z|) S M+M+M
3 - 3

where M = mtin (|cost | + |cos2t|) = |costy | + |cos2ty| for some o,

So, F(x,y,z) > M for all real z,y,z and min F (z,y,z) = M because
T,Y,z

F (to,to,to) = M and for solving our problem we need to find
mtin (Jcost | + |cos 2t]) .

Denote u := |cost |, then u € [0,1] and [cost | + |cos2t| = u + [2u? — 1]

There are many ways to find m[in] (u + |2u2 — 1|) , but I prefer the
u€(0,1

following way:

u—|—|2u2—1|=u—|— because

u—1’|2u+\/§’>u+ u—l‘>1
V2 - V2| T V2
2u++/2 > /2 > 1 and for arbitrary real a, b inequality a+|a — b| > b holds.

Let’s compare this way with a traditional way:
1
2u?—1 for =<u<1
V2

|20 = 1| = g
1—2u? for0<u< —
T2
Therefore m[in] (u + |2u2 — 1|) = min {min1 (2u2 +u— 1) ,min o (1 +u — 2u2)}
u€el(0,1
1 1
1. Let —2 < wu <1, then 2u? + v — 1 increases on ﬁ’ 1} (because
z-coordinate of parabola’s vertex is less than 0 and, therefore,
min; (2u? +u—1)=2- <1>2+1—1—1-
' V2 V2 V2’
1 1 1
2. Let0 <u < ——, thenmin 5 (1 +u —2u?) = min{l, — » = —, because
V2 2 ( ) V2 5
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1
function 1 +u — 2u? have only local maximum 10 the segment [ , \/5} .
So minimum can be obtained on the boundaries of the segment.
Problem 8.25 (M1067 Kvant)
Solution 1. .
First we will find numbers p, g such that 1 5 2 Ppr+q
1
x> (pr+q) (1 — xz) for any positive x with equality for z = 7
Let h(z) :== 2 — (pz + q) (1 — 2?) . We claim h (1> =n <1 =0.
V3 3
Then we h h(1> 0= <p+)<1 1><:>
en we have — | = — === - =
V3 3 \v3 3
1 p 2 V3 p
—==("=+q): = T ="2+g
V3 <\/§ q) 3 2 vz !
1 1 1 (p
W{i—)=0 <« 1= 1—)—2~(+><:>
(ﬁ) AV ARV ANV,
2p 1 V3 2p V3 3
l=—-2-—— 2= — <= p=3 = — =— = q=
3 V3 2 3 P 2 ~ 3 e
V3
2 2
V3 1 1
Andthenx—<3x—2 (1—x2):3 x+§\/§ m—\/g) .
3
So, _r > 3z — £ for any = > 0 and, therefore,
1— 22 2
V3 3f
> 3r—— ] =3 - —
0%361 xz_C%:c(m 5 (r+y+2)
Since (z+y+2)° >3 (@y+yz+2z0) =3 < z+y+2>3
3v3 3 3v3
thenS(x+y+z)—Tf>3f \2[ \2[
Solution 2. .
Since z,y,z € (0,1) then > —— —Z Zx =5 Y g%t
cyc 1- cyc k=1 k=1 cyc
and by PM-AM Inequality
1 2%—1 Ty+2\* b1 o @y + 2™
we havefczy:c:z: > (3 — czyza: ZW

Also we have (z 4y +2)° >3 (zy+yz+22) =3 < z+y+2> 3.

(\/§)2k71 - 3\/§

Then Y 2261 > and, therefore,

e = \3/2>(k1) T3k
3 1/3 3V3
0%21 x2—,§1 3k 3‘/3'1—1/3_ 2

Solution 3.
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1 1
Let h(x) = %.Sinee W (z)= 5 + 5 > 0 and
- (1—-2x) (1+z)
2 2 dz - (22 +3
(1-2) (1+x) (I-2)"(x+1)
then h () is concave up and increasing on (0,1).
Hence, by Jensen’s Inequality

h(z)+h(y)+h(z) Zh<x+y+z)_

> 0 for z € (0,1)

3 3

Since (z +y+2)° >3 (vy+yz+220) =3 <= x+y+2z>+3and
h(x) increasing on (0, then

2

3vV3
h(x—l—y—i—z < ) —and therefore, h (x)+h (y)+h (z) > T\[
Solution 4. )
a? (z+y+2)
By Cauchy Inequalit = =
y uchny Inequ IY(%:C:[_ (%Cx _.'L'+y+2_(.'173+y +Z3)

Since (z+y+2)° >3 (ay+yz+22)=3 < z+y+2>+3and
(x+y+2)° STty tz

3 3 3
1
Py 23> > then = Ty 2 > =
3 r+y+=z 3
(z+y+2)° T4y+z V3 3V3
and = 3 3 T 2> = .
rHy+z— (23 +y>+23) I _ 2
rT+y+=z 3

% Problem 8.26**
1 1 1
Let n = 3. We have + + =1 <
1+x 1+2o 1423
342 (x1 + 22+ x3) + w122 + Tows +x371 = 1+ 21 + 22+ 23 + 2122 + X223+
T3x1 + T1X2T3 < 2+ x1 + To + T3 = T1X2T3.
Since x1 + xo + 3 > 3T 1T2x3 then x1x9x3 > 2 + 3T 1T2x3 <—
(/zrm2ms — 2) (Yamams +1)° >0 <=
m—220 <~ 371{,1321}3223.
Or, by another way:

Si TR I S PPUIG S — m?’
ince = =
1+£L‘1 1+1122 ].+IL‘3 1+J?1 1+$2 ].+5133

1 3 1 1 1 2(1

+ x3 +x3:x3:>x322(1—|—x3) . _ (14 z3) .
14+21 14z 1+2z 1+ 29 \/(1+$1)(1+$2)

2(1 2(1

Similarly we obtain xo > (L+ ) > (A +21)

VI +a3) (T+21) o T VAt a2) (T +as)

2 (1 + 1) (14 29) (1 +23) =23,

T1T2X3 2> =
VA + o) (L+as) - /(L +as) (L+a1) - /(1 +21) (1+22)
Using idea of this way we can prove general case.

We have for any k =1, 2

1 Ty O
=1 <— = < = Tk.
; 1+ i:§¢kl+xi 1+ g 1231.314‘% g

Hence,
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Then by AM-GM Inequality

n n
D ST R T § G
=12k 1+ i=1,izk 1+ T

7(n— 1)1+ )

ag > L k=1,2,..,n.
el I (T4 o)
i=1,i#k
Let P:= [] 1+ =x). Since [] (14z;)= then
E=1 i=1,i#k 1+ g
n n Pn
[T [I (+z)=—-———=P" ! and, therefore,
k=11i=1,i#k T (1+ )

k=1

2 - n—1)1+=x =1 n—1)"P n
Hwsz ( ) (1 + ) _ k :("\1/]%:(”_1)

9. Invariants.

Problem 9.1(65-Met. Rec.).

a
a) If in initial fraction 3 parity of numerator and denominator is different

then parity of numerator and denominator of the fraction after transformations

—b b b
2 a ot , — remains different as well.

— =
b b’ a
Hence, starting with fraction 1/2 and using such transformation

the fraction 67/91 can’t be obtained.

b) By the same reason as in a) can’t be obtained the pair (5/6,9/11).

c) Note that number S (a,b,c) = a® + b* + ¢? is invariant of allowed trans-

b a—b
formations. Indeed, let (a,b,c) be transformed to <a+7 a,c) then
V2 V2
a+b a—b a+b\* [a—b\?
S| —=,—=c) = + +¢* =a?+b0*+c* = S (a,b,¢).
(\/i ﬂc> (ﬂ) (ﬂ)ca ¢ =5labo)
1 13
Since S((Q,\/il/\/?)) =44+2+ 5=7% and
S(1L,vV2,vV2-1)=14243-2V/2=6-2V2
then to obtain the triple (1, V2,V/2 — 1) isn’t possible..

Problem 9.2(66-Met. Rec.).
Let a triple (a,b,c) of non-negative integer numbers represent

state of population of chameleons on Rainbow Island, namely
a, b, and c—are numbers of red, green and yellow chameleons,
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respectively. Then (ag, bo,co) = (13,15,17) is initial population

of chameleons, (a,b,c) is a current population.

Let (as,bys,cr) be prospective final population of chameleons,

that is (af, bf, Cf) = (15, 15, 15) .

Meeting of 2 chameleons of different colors we will call

productive meeting.

Let T; (a,b,¢) ,i = 1, 2,3 be population after productive meeting

of chameleons from population (a,b,c).

Possible three kind of transformation of (a,b,c) : .

T (a,b,c)=(a—1,b—1,¢+2) or Tr (a,b,c) = (a—1,b+2,¢c— 1) or

T5(a,b,c) =(a+2,b—1,c—1).

We will consider states of chameleon’s populations by modulo 3.

Note that (ag, bg,co) = (1,0, —1) (mod 3) and

T; (a,b,¢) = (a—1,b—1,¢— 1) (mod3),i=1,2,3.

Let (a;,b;,¢;) = T; (a,b,¢),i=1,2,3.

Since a; +b; + ¢; = a+ b+ ¢ (mod 3) then remgs (a + b+ ¢) is invariant

of transformations T;,7 = 1, 2, 3.But this invariant isn’t sensitive

enough because rems (ag + by + ¢o) = 0 and

rems (ay + by 4+ ¢y) = 0 as well (coincidence of initial and final

states doesn’t mean that initial state can be somehow transformed

by T;,¢ =1,2,3 to the final state).

Thus and so we will consider only states of chameleon’s population

which satisfy a + b+ ¢ =0 (mod 3) .

Then a2 + b2+ =(a—1)°+(b—1)>+ (c—1)* =

a?+ b2+ —2(a+b+c)+3=a®>+b%+ c? (mod3)

and this new invariant is sensitive because

ag + b3+ c§ = (12 + 02 + 22) (mod 3) = 2 (mod 3) but

a?p + b?p + c?p =0(mod3).

Another simple invariant R (a,b,c¢) = {rems(z) |z € {a,b,c}} (set of re-
mainders)

is better.

Indeed, since R (a;, b;,¢;) = {rems(x — 1) | z € {a,b,c}} = R(a,b,c) and

R (a07 bOa CO) - {Oﬂ 1) 2} 7é R (aO; bOa CO) - {0} .

So, prospective final population of chameleons is impossible.

Analysis.

Invariants can help in the proof that some final state of the system

can’t be reached by admissible transformations from given initial

state if value of invariant for both are different.

But in case of their coincidence the question remains open.

In some such problem possible use linear model for representation

state of the system as, for example, in the recent problem, and then

we can get answer not only for richness of the final state, but also

how to get this state using admissible transformations.

Suppose that we apply k; transformation of kind 73,7 =1,2,3

to initial state (ao,bo,co) to obtain final state (ays,by,cys) that is
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(af, bf, Cf) = (ao,bo, Co)—l-k'l (—1, -1, 2)+/€2 (—17 2, —1)-|—k‘3 (2, -1, —1) <~

—kl—k2+2k3:af—a0 —k1 — ko 4+ 2k3 = —2
—k‘1—|—2]€2—]€3=bf—bo <~ —k1+2kyg — k3 =0
2]€1—]€2—]€3:Cf—60 2/€1—/€2—/€3=2

Easy to see that latter system have no solutions in integers.
Indeed, 2k1 — ko — ]{73 — (—kl + 2ky — kg) =2 3(]{}1 — k2) =2
and that impossible.

Let p:=aj —aop,q := by — by, 7 := c; — co.

For which, p, g, the system has nonnegative integer solution.
First claim is obvious: p+ ¢+ 7 = 0.

—ki1 — ko +2ks=p . _
— { kl k2—|—2k3—p

Then § —ki +2ky — k3 =¢q “ky 42k — ks =g

2I€1 — Ifg — k‘g =T
{—k2+2k3:p+k1 {3k2:p+2q+3k1
2k2—k3=q+k1 3k3:2p+(]+3k‘1
So, claim number two: p = ¢ (mod 3) .
If p= ¢ (mod3) and p+ ¢+ r = 0 then for big enough non-negative integer

—

k1
we obtain nonnegative integer ko and ks.
Apply represented above idea for solving the following training

Problem 9.3.
For solving this problem we will use represented above idea.
Suppose that we apply k; € NU{0} transformation of kind T;,7 = 1,2, 3,4
to initial state (13,17) to obtain final state (37,43).
Then correspondent Linear Model of this problem is:
(37,43) = (13,17) + k1 (2, 1) + ko (1,2) + k3 (—2,1) + kg (-1, -2) <=
{ 2k1 + ko — 2ks — kg = 37— 13 — 2k1 + ko — 2ks — ky = 24
—k1 4 2ko + k3 — 2ky = 43 — 17 —k1 4 2ko + k3 — 2k, =26
Since 2kq + ko 72]{337]{344’2(7]{31+2k2+k3*2]€4) =24+2-26 <~
5 (ky — k4) = 76 then system have no integer solutions and, therefore, final
state
of balls in the box isn’t possible.

10. Miscellaneous problems.

Problem 10.1(1-Met. Rec.)
Let x; be amount of mushrooms from the forest brought by i — th pupil.
Since no two of them have not brought equally mushrooms we can
assume that z1 > zo > ... > x3g.
According to the condition of the problem x; + x5 + ... + g = 60. Thus,
(1) { Ty + To + ... + xg = 60

1<2 <29 < ... < T8,
and we will prove that g + 7 + 2 > 1 + 22 + ... + 15 <—

(©1985-2018 Arkady Alt 126



Math Olympiads Training- Problems and Solutions

2(zs+ a7+ a6) > 11+ T2+ ... + 15—

2($g+$7+$6) > 60 < zg+ 7+ 26 > 30.
Further we will consider four variants of proving this inequality.
Let p:=2zs+ 274+ 26,¢: =1 + 22+ ... + x5 and t := xg.
Sincep>t+t+1+t+2=3t+3 and
q>1424+3+4+5=15then p=060—¢g < 60— 15=45. Also note that

g<t—1+t—24t—-3+t—44+t—-5=5t—15 <=

60 —p <5t —15 < 75— 5t <p.

3t+3<p

Hence, { 5Bt <p
and we have to prove that p > 30.
Using these notations we will consider following three variants
of proving inequality p > 30.

< max{3t+3,75 -5t} <p

Variant 1. 3 -

Since 3t+3§p<:)t§p and 75 — 5t < p <= pgt
B —p p—3 . wD—-p p—3

th <t< 1ds g—

en 5 sts 3 yields 5 =73 <

15+1§§+§-¢$15&6§&)¢$30§p

Remark.

Numbers 3, 8,60 in the problem so well matched, that p which provide

75 — _
solvability of inequality bp <t< p=3 int € R automatically

provide solvability of this inequality in ¢t € N.

75— -3
Rigorously, for integer ¢ must be P <t< b ==
r5ef+4]§t§{p3ﬂ — r©5p]§t§{§}lmﬁﬁﬂtzl

we obtain max n-p 1<t < [2} —1.
5 3

w

2< [
Criteria solvability of latter inequality in ¢ € N is 79— p p =
< |=| -1
[ 5 ]_{3]
6<p
(2) 9—-p D .
< |2 =
= =[5 -1
Let {79_])} =n <= m<T79—p<bn+4thenn+1< [g} <
n+3<p
and, therefore,
6<p 6<p
(2) = 3n+3<p = 3n+3<p =
M<T9—p<bdbn-+4 H=—5n<p<T79—>5n
max {6,3n + 3,75 —5n} <p <79 —5n max {6,3n + 3,75 — 5n} < p <79 — bn
6 <79 —5n — 5n <73
3n+3<79—5n 8n < 76
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max {6,3n+ 3,75 —5n} <p <79 —5n 75 —-5n<p<79—5n
<
n<9 n<9
because
75 —5n>6and 75 —5n>3n+3 forn <9.
Hence, minp = Hl<iIgl (75 — 5n) = 30.

Variant 2.
To solve problem suffice to prove that max {3t + 3,75 — 5t} > 30,
for any natural ¢.

. 3t+3>30 t>9
Since max {3t + 3,75 — 5t} > 30 <— 75— 5t > 30 [9>t
then inequality max {3t + 3,75 — 5t} > 30 holds for any natural ¢.
Variant 3.

Let ¢ (t) := max {3t + 3,75 — 5t} ..Since 3t + 3 > 75 — 5t <= ¢ > 9 then

. [ 3t+3ift>09 . - .
Iglelggo(t)—{ 75 5tift <9 and,therefore,rtrélﬁrllw(t)—mln{?lglg@(t),rggw(t)}

. . B . o _ 30 <o
mln{rtn<1§1(75 5t),rtxl>1§1(3t+3)} min {30,30} = 30.Hence, 30 < p

Variant 4.
Let t1 :=xjand ¢; == x; — x;—1,1 = 2,3,...,8. Then
X :tl,ﬂfi :tl +t2++tl,Z:2,,8
where tq,t9,...,ts € N and 21 + 29 + ... + x5 = 60 <—
8t1 + Tty + 6t3 + Bty + 4ts + 3tg + 2t7 + tg = 60 <—
4(1‘1+$2)+3t2+6t3+5t4+4t5+3t5—|—2t7+t8 =60 <~
60 — (3tg + 6t3 + 5ty + 4t5 + 3tg + 2t7 + ts)

xr1 + Tg = 1

60— (3-1+6-14+5-14+4-14+3-1+2-1+1)
$1+I2§ 4 =0.
We have

rs + T7 + Tg — ({IJl + X2 —|—.133—|-334—|—.7}5) :t8+2t7+3(t6+t5+...—|—t1)—

(ts5 + 2ty + 3ts + Aly + 5t1) = tg + 2ty + 3tg + 25 + bty — bty — 2ty =

(t8+2t7+3t6+2t5+t4)—($1+.’E2) > (1+2+3+2+1)—9:0

Variant 5. (Combinatorial solution).

Assume that there are no three pupils, whose collect amount of mushrooms

not less than the other five pupils. That is for any 1 < ¢ < j < k <8 holds
inequality

x; + ;5 + x5 < 30. Summing all these inequalities we obtain

8 8
(x1 + 22 + ... + 8) <2> <30(3> <= 60-28 <30-56 <= 1< 1 thatis

contradiction.

Analysis of solutions.

Of course, the solution of the original problem is not exhausted by the above
variants. There are very "childish" solutions in which long and unconvinc-
ing verbal periods are designed to replace the missing algebraic technique with
branched logic.And the latter in such cases is not less (if not larger) stone of
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a stumbling block.But the choice for the given variants of the solution fell also
because they represent some technique, the scope and utility of which is by no
means confined to this problem.

Here the following ideas and techniques are involved:

1. = here D =D, UD
max f (x) = max {fé%’f f(z), max f (:c)} , where 1U Dy
(Similarly for min f (z)).
zeD
2. Lover and upper bounds and attainable lover and upper bounds as
minimum and maximum, respectively.
3. Reduction of extremal problems to parametrical (finding range of
parameter which provides solvability of systems of inequalities).
4. Solving inequalities with integer parts.

5. Reduction a problem with dependent variables to the problem with
independent variables.

Problem 10.2(2-Met. Rec.)

Let n is number of baskets and x; is number of apples in i-th basket,
i =1,2,...,n numbered so that 1 > x5 > ... > z,, > 1.

Suppose that the required situation is attainable that is remains k&
baskets and in k-th basket it is as many apples that if from i-th
basket to throw ¢&; apples, i = 1,2, ..., k then

$1—(51 :1'2—(52:...:£L'k—(5k and

1 — 01+ 22 — 09+ ...+ 21 — O :k(xk—ék) > 100 = kxj > 100.
Suppose now that there is k such that kxj; > 100.

Then for 6; :=x; —xg, 1 =1,2,...,k — 1 and &, := 0 we obtain

Ty — 51 = l‘k,i = 1,2, ,k

Therefore, x1 — d1 + x2 — 02 + ... + x — d = kxp, > 100.

Thus, existance of such k that kxjp > 100 is sufficient and

necessity condition which provides claims of the problem

. We will prove that there is k for which kz; > 100.

Assume contrary that kzp < 100 for any k= 1,2,...,n.

1
Then in particular 1 < z,, < E — n <100 <= n <99 and

1 1 1
2000 = oz, <100 (14 =4+ =+ ...+ —
000 =21 +x2+ ... + 25 < 00< +2+3+ +99> =

1 1 1
20<1+§+*+...+7.

3 99
But1+1—|-1+...+1<1+1+1+1+1+1+(1+1+...+1> <
2 3 99 2 3 4 5 6 T 7 7
;L% + ; -98 < 17 and that is contradiction.
Analysis.
More precise estimation of the sum 1+ 1 + % + ...+ ig < 6 give the

opportunity to solve the problem for common number of apples that not
less then 600.
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Problem 10.3(3-Met. Rec.)
Note that 3° = 1 (mod 10) , 3! = 3 (mod 10), 32 = 9 (mod 10) , 3% = 7 (mod 10) ,
3* = 1 (mod 10) and so on...Let n = 4k + r,where r = 0,1,2,3,4.
Then for r = 0,1, 2, 3,4 the unite digit will be 1, 3,9, 7 respectively.
To prove that digit of tens in 3" is even number suffices to prove that
3" — 110 (3™) divisible by 20. ( 7 (a) is remainder from division a by b).
3% —1 (if r =0)
3FL 3 (if r =1)
329 (if r = 2)
3+ 7 (if r = 3)

We have 3" — 119 (3") =

Note, that 3% —1 = (39)" — 1131 —1 — 3% _ 11920, 3%+l _3—
3(3% —1) 120

and 3%+2 —9 =9 (3% — 1) : 20.

Since 3443 —7 = 34+3 27 (mod 20) = 27 (3** — 1) (mod 20) = 0 (mod 20) .

Problem 10.4(7-Met. Rec.)

Formulation of the problem eqgivalent to the following;:

Does it exist a natural number n such that [10% {/n}] = 198519867

Since [10% {y/n}] = 19851986 <= 19851986 < 10° {y/n} < 19851987 <=

19851986 19851987
¢ < {V/n} < T(19851986 # 108 {\/n} because /n
either integer or irrational).
. 19851986 19851987 . .
In the notation o := T = 108 latter inequality becomes

a < {y/n} < B and problem’s question can be formulated more general:
Let (e, ) C (0,1) be any interval. Does it exist a natural number n such
that a<{yn}<pB?
It turns that unswer on this general question is positive and, in particular,
positive for the original problem.
Indeed, denoting p := [\/n] we obtain
a<{yn}<B <= a<n-p<f < (a+p)’<n<(B+p)>.
And now the question arises:
When interval (a,b) contain an integer with guarantee?
The answer is quite simple:
If b — a > 1 then there is integer n that a < n < b.
Indeed, since a < [a]+1<a+1<bthenn=[a]+ 1€ (a,b).
(Of course condition b —a > 1 is only sufficient because
for example 0.9 < 1 < 1.01).
Coming back to inequality (a + p)2 <n<(p —|—p)2 we claim

1 (5 - o)

B+p)P—(a+p)?’>1 < 2p(B—a)>1-(82—a?) < p> (G
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Let p be any natural number satisfying latter inequality then interval
((a + 10)2 , (B +p)2) contain at least one natural n, that is there are p,n

natural such that a+p < /n < B8+p < a < /n—p < and since
p<a+pf+p<p+lthenp</n<p+1 < [/n]=p.

Thus, a < {\/n} < 8, Q.E.D.

Remark.

This problem can be solved by another way, but preference was given
to represented solution because it clarify deep roots of original problem
and allow solve the more general problem, introduce to wery useful
technics and facts, leads to important concept of "dense set".

We say that proper subset D C (0,1) dence in (0,1) ff for any

(a, B) € (0,1) there is d € D such that d € («, 3) ,or by the other words
if DN (e, B) # @ for any (o, 8) C (0,1).

As a training exercise proposed the following

Problem.
Prove for any real numbers o < 3 there are n,m € N such that
a< In—m<p.

Problem 10.5(12-Met. Rec.)
Solution 1.
Let P (z) := az?® + bz + c.Note that

PO)=c P(2/3)= 4 2 o= T 0H0

9
and 1P(0)+P(2/3) _C da +6b+9c _ 2(2a + 3b+ 6¢)
3 1 3 9 9
So, P(2/3) = —gP (0).If P(0) then P(2/3) =0 as well and 2/3 € (0,1);

If P(0) # 0 then P (0)- P(2/3) <0 and, therefore, due continuity of P (x)
equation P (z) = 0 has solution in (0,2/3) C (0,1).

b 2(2a+3b+6
Or, since P (1)+3P (1/3) = a+b+c+3 (g + 3 + c) = w
then P (1/3) = 0 or we have solution between 1/3 and 1.
(But of course this does not mean that on (0,1) we have two roots because
(0,2/3)N(1/3,1) # @ and root can be the same).

=0.

Solution 2.
az®  br? o . .
Let F (x) := — + —— + cx be primitive function for P (x),that is

3 2
b 2 b
F’(x):P(z).SinceF(l):§+§+c:w:0:F(0)

then by Roll’s Theorem there is a point zg € (0,1) such that
F/(.’L'()) =0 P(Q?o) =0.

Remark. Easy to prove that 2a + 3b + 6¢ = 0 imply existence of root of
P(z).
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Indeed, since b = 72§a — 2c then

b? — dac = 2a — 2 ’ _ dac — 4a® — 12ac 4 9¢* + 27¢* (2a — 3¢)?
= 3 _ : _ '
3c2>0
2 _ 2
becauseM+302:o — ¢=0,a=0but a #0.

Problem 10.6 (13-Met. Rec.)
a(da+2b+c) <0 < 4a®+2ab+ac <0 < 16a® + 8ab < —dac <
16a2 + 8ab + b* < b2 — dac < (da+b)* < b® — dac = b —4ac > 0.

Problem 10.7(Met. Rec.)
For convenience, we write the function f (z) given in the problem
in the form f(z) =11 (z) 2 (2) ..., (x),

r—2i+1 1 .

AT =120

T —2 T —2
Note that domain of f (z) is D (f) = R\ {2,4,...,2n}, where function
f (z) is differentiable.
()

For any z € D (f) we have ' (z) = f (2) ééz ()

! L 1
F@) ==Yty o

Consider now two cases:

1. If x <1 or x> 2n then f(x) >0 and

(x—20)(x—2i+1)>0,i=1,2,...,n .Hence, f' (z) <0;

2. Let z € (2k —1,2k) ,k=1,2,..,n.

Since 0> (z — 2k) (z — 2k +1) = (z — 2k +1/2)* —1/4 > —1/4

then @ =2k (; okt 1) < —4 with equality for x = 2k — 1/2.

From the other hand since x € (2k — 1,2k) then

x—2i>2k—1-2{=2(k—1i)—1>0 for i < k and, therefore,

(z—20)(x—2i4+1)>2k—-1-20)2k—1-2i+1)=2(k—1) (2(k—1) - 1) <

1 1
@—20)(@—2i+1) 2(-0Ch-9)-1)
Similarly, for ¢ > k we have

where [; (z) :=

1
Since I} (z) = — th
SII’ICG ] (Z’) - % en

(x—20)(x—2i+1)=(2i—2)(2i—x—1)>(2%i—2k) (2i—2k—1)=2(—k)(2(i—k)—1) >0

1 1

G2 (@—2i+1) 206-RMQi-k -1
Hence, if £ > 1 then

and, therefore,

k 1 1 1 k—1 1 2k—1 1

—1 k— _
D P P T R Vi Y ) Y S Rl DI Y1 Y Sy R P T Y
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and for k£ = 1 by definition of Summation Operator we have

k=1 1
=0
Z; (x —2i) (x —2i+ 1)
S 5 ! f k
1 = 1,2,..
0, anyway Z; -2 @—2i+1) < 1 for any 2, .M
Similarly, > - - < > - - =
i1 (@ =2) (x—2i+1) 55,20 —k)(2(0—k) - 1)
LS ! Y k<
2.3 4.5 T 2mn—-k)@Em-k -1) 1-2 2-3 @n—1)y2n = ST
n 1

If £ = n then by definition =
v i=%—1 (z—2i)(z—2i+1)
Thus, >

1 —4)+1=-2.
L ez LT
Since Il () < 0and l; (z) > 0,7 # k for x € (2k — 1,2k) then f(x) <0 and,

therefore, f'(z) = — f () ; (z — 20) (; o)

n 1

Analysis.

Another way of solving this problem give opportunity to set and
solve the

following generalization of the problem (SSMJ #5376).

Let aq,as9,...,a,,b1,bs, ..., b, be positive real numbers such that
(x—b1)(x—b2)...(x —by)

b <ar <by<ag <...<ap_1<b, <a,Let F(LE) = .
(x —ay) (x — ag) ... (x — ay)
Prove that F’ (x) < 0 for any « € Dom (F)

Solution.
Lemma.
F (z) can be represented in form

F =1

(@)=1+ 21 =,

where ¢,k = 1,2,...,n are some positive real numbers.
Proof. , ) .
Let Fy, (z) := (@ =b) (@ =by)... (v~ be) kE<n

(x —a1)(z—az)...(x —ag)’
We will prove by Math. Induction that for any k& < n there are positive
numbers

¢ (i) i = 1, k such that Fy () = 1+ 3 @)

zlx_az
Let di, :==ar — b, >0,k =1,2,...,n.
-b - -b d
Notetha‘cFl(m):glj L_TTmta Loy ——
Tr — ap Tr — ax xr — ax
z — by, d kg (i
Since ——L — 14 —“F*1_ then in supposition Fy () =14> k(z),
T — Qp+1 T — Qp+1 =1L — Q4

where ¢ (i) > 0,4 =1,...,k < n we obtain

Fk+1(a:)=Fk($)'x_ka_<1+Z Ck()>(1+dk+l):

T — Ak+1 i=1 & a T — Ag+1
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d ke (3 k dir1cr (1 d kocp (3
TSN k()JrZ erice (D) g de (i)
T—app1 =1 T —a; =1 (T —a;) (T —agyr) T—0k+1 =12 — Q4

ko diiici (4 1 1 d ke (4
Zk-ﬁ-lk()( B >=1+ k1 <1+Z k (2) )+
i=1 Ak+1 — G5 \T — G4 T — k41 T — Qk41 i=1 Ak+1 — @4
kocp (3 d dii1Fy (a Eoep(i) b —a;
3 k()<1 k1 >_1+ entFh (@) |3 @) bein =i
i=1 L — Q; akp+1 — a4 T — Ak+1 i=1 L —Q; Q41 — A4
Since Fy (ag+1) > 0 and by11 — a; = (b1 — ax) + (ax — a;) > 0 then

bry1 — a; i ‘
cors (B +1) = dpst Fe (ansn) > 0, cpp (i) = et =@ g u oy
Qp+1 — G4

k+1 ;
and Fyr () = 14 52 (@)

i=1 T = @

. o Gk
Since F'(z) =1+ Y
k=1

n
Fl'(x)=->" Gk 5 <0 for any & € Dom (F) = R\ {a1,az,...,an} .
k=1 (x — a)
Problem 10.8(20-Met. Rec.)
We will say that therms of the sequence a;,,a;,, ..., a;, arranged in
numerical order of i; < iz < ... < i), form the upper ladder (form the
lower ladder) for a,, if holds two conditions:
1. ik =1m;
2. (79 2 Aj, Z Z (2798 (ail S (€798 § § alk)
Wherein, k called "the height of the ladder".
Obvious that for any term of the sequence set of correspondent
upper ladders (lower ladders) isn’t empty. And besides, for any term of
the sequence the height of its ladder bound by the number n? + 1.
Thus, for any term a,, of the sequence defined pair of nonnegative
integer numbers (P, ¢m) which, respectively, are the highest lower
ladder and the highest upper ladder for a.,.
Note that if my # mao then (Pm,, Gm,) # Pmas Gms) -
Indeed, WLOG assume that mi < ma. If @y, < @y, then pn, > pm, +1;
If G, > G, then ¢, > gm, + 1.S0, we have exactly n? + 1 different pairs.
So, our problem can be formulated as follows:
Prove, that among n? + 1 numbers ay, as, ..., ay2, ay24; there is at least
one such that its ladder (no mettter upper or lower) has heigth not
less then n + 1.
Assume contrary, that is for any m € {1, 2,...,n% + 1} the heigth of any
ladder for a,, does not exceed n.Then p,,, ¢m € {1,2,...,n} and, therefore,
total amount of pairs (py,, ¢m) does not exceed n?.That is the contradiction.

and ¢ > 0,k =1,2,...,n then
T — ag

Problem 10.9(22-Met. Rec.)

m 1
First note that for m =1 inequality /7 — — > — becomes
n_ mn
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1 1 2
VTi—=2> 2 — V7> =

and obvio%sly Tflolds for any I?atural n.

We will prove that for any natural n,m such that m <\T
and m > 2 holds 7Tn? — m?2 > 3. "

Since Tn2 —m2 =3 forn=1and m =2 and % < /7 then
suffice to prove that equations 7n?> —m? = 1,7% —m? =2
have no solutions in natural n,m such that % <A\/1.

Indeed,

m?—m?=1 = m?=—-1(mod7), ™m?-—m?=2 = m?=5(mod7).
But for any integer m holds m? = 0,1,4,2 (mod 7).

Now we ready to complete the solution.

1 1
Sufﬁcetonotethat\ﬁ—@>— = /T—m> = —
n mn m

1 1
nWT>m+ — — ™m?>m’ 424 —
m m

1 1
™2 —m? >2+—2 and Tn? — m? 23>2+7.
m m
By the way was proved that
maux{mQ—ﬁz2 | m,n € N and m < \ﬁ} = —3.
n

Problem 10.10(39-Met. Rec.)
This problem has the following Interpretation:

. 6 p 7
Prove that mm{q | g€ Nand 3(p € N) {13 < P < 15}} = 28.
Note that for any fraction 7 2 such that % < 2 holds inequality
a a+c c
b brd S d o
Also note that if bc —ad =1 then 77 both irreducible and since
a+c

(b+d)c—(a+c)d=bc—ad =1 then is irreducible as well!
In our problem 7-13 —-15-6 = 1.

We generalize original problem in form of the following

Theorem.

a c a ¢
Let — and — be two positive fraction such that — < — and bc — ad = 1.

Thenmin{quNandEl(pGN) [Z<p<c}}b+d.
q

d
Proof.
First note that c(b+d) —d(a+c¢)=b(a+c¢c)—a(b+d) =bc—ad=1.
Assume that there is a fraction g such that % < S < % and with ¢ < b+ d.
g = pb—aq>0 < pb—aq >1 and

b+d

a
Since — <
b

B<§ = qc—pd>0 <= qc—pd>1
q
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then d (pb — aq)+b (gc — pd) > b+d < q(bc—ad) > b+d < ¢ > b+d.
Thus, we obtain the contradiction ¢ < b+ d < b+ d which complete the

proof.l

Also we can see that for any fraction P Such that % < L < % and bc—ad =1
q
holds g >b+dand p>a+c (c(pb—aq)+a(gc—pd) > a+c <

plbc—ad) > a+c < p>a+c).

Let P be fraction with minimal denumerator b + d such that

hrd
?Sbtd o d

Assume that p > a+c¢. Since 0 < ¢(b+d) —pd <= 1< c¢(b+d)—pd then
1<c(b+d)—pd<c(b+d)—(a+c)d=bc—ad=1 that is contradiction.

Therefore, p = a+c and fraction with minimal denumerator defined uniquely
a—+c

d 1t .
and equal to b d

Remark. 0 ¢ o ¢
In the case 0 < 3 such that 7 < p and bc — ad # 1 the way of

finding of "internal" fraction with minimal denumerator isn’t works.

Y Problem 10.11.
So, problem is:

Find all solution of equation
n

(1) zimems T, = > i+ Y, xizi+ Y Tk T3+ F L1 L. Ty >
i=1  1<i<j<n 1<i<j<k<n

10"tz + 10" 22y + . + 1021+ + 1= (1 +21) (1 +22) .. (1 +2,)

where z1 € {1,2,...,9} and 9, z3,...,z, € {0,1,2,...,9}.

Lemma.
For any =7 € {1,2,...,9} and 9,23, ...,z, € {0,1,2,...,9} ,n > 2
holds inequaliity
(1+z1)(T+22) ... (1 +2,) <10 Lz +10" 229 +... + 102, 1+, +1

and equality occurs iff xo0 =23 = ... =z, =9 and x; € {1,2,...,9} be any.
Proof.(using Math Induction).
1. Base of Math Induction
Let n = 2 then we have (1 + 1) (1 +22) <10z + 20+ 1 —
1+ + 2o+ 2100 <1021 + 22+ 1 <= 7122 <927 <= 71 (9—22) > 0.
2. Step of Math Induction.
Let z1 € {1,2,...,9} and a9, 23, ..., Tn, Tnt1 € {0,1,2,...,9}.
If 2,41 =9 then
I4+z)Q4+a2)...T+z,) (I+zp41) <

10"x; + 10" 1oy + 10" 229 + ... + 102, + Tpy1 +1 <=
(1+2) (1 +22) ... (1 4+2,) <10 12y +10" 205 + ... + 1021 + 2, + 1,
where latter inequality holds by supposition of Math Induction
and equality occurs iff xo =23 =...=2, =9,
x1 € {1,2,...,9} be any and 41 = 9.
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Let now z,41 € {0,1,2,...,8} .Then
10"2; + 10" 1oy + 10" 229 + ... + 102, + Tpyy + 1 N
1+ Tn41
10721 + 10" tag + 10" 229 + ... + 10z,
Lt 10 B
10" 1z + 10" 229 + ... + 10x,,_1 + =, + 1.

By supposition of Math Induction we have

10"ty +10" 229 + ..+ 102, 1+ 2 + 1> 1+ 21) (1 +22) . (1 +25).
Hence, 10"z, + 10" 1oy + 10" 225 + ... + 10z, + Tpp1 + 1 >
I+z)(14z2)...(1+x,) 1+ z,40) R

Using Lemma we immediatelly obtain that all solutions of equation (1)
are numbers 2199...9 and 21 € {1,2,...,9}.

Problem 10.12(51-Met. Rec.).
P(n)-r©) _ P

Let n be an integer root of P (z) then 5 =— €Z = n
n— n

is odd as divisor of o](;d numlj%er.1 Pl

From another hand (n) = P(1) = — (1) €Z — n—11is odd as

n—1 n—1
divisor of odd number.
But since n odd then n — 1 is even. So z os odd and even

simulteneously-that is contradiction.
Problem 13(52-Met. Rec.).

Let a, b, ¢ be different integer numbers such that

P(a) =P (b) = P(c) =1 and assume that n is
integer root of P (x). Then for z € {a,b,c} we have

P(n)—P -1

() (m): €Z = n—ze{l,—-1}.
n—= n—x

Since three numbers n — a,n — b,n — ¢ belong to 2-elements
set then at least two of them is equal.

But that yields that equal two of a, b, ¢ and it is contradiction.

Problem 10.14(53-Met. Rec.).
We will prove using Math Induction that P (n + km) divisible
by m for any natural k.
For k =1 we have
P(n+m)—P(n) _ P(n+m)—m 7 e P(n+m)
(n+m)—n m m
P(n+ km)

€ Z.

For any natural k& assuming that - € 7Z we obtain
P(n+(k+1)m)—P(n+km) P(n+(k+1)m)—P(n+km)
(n+(k+1)m)—(n+km) m
P(n+(k+1)m)
m

cl —
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Problem 10.15(54-Met. Rec.).

Let g :=x and g := f (vx—1),k € Nthen g (z) = f (f (...f (z)...)) = xn.
—_—

r n—times
N )
3)371:%7@:%:@: L x2 = Z 5
V1—2x V1-—2x7 1 x V1-2z
1— 22
_r
z Tk V1 — ka?
Assume that xp, = ———= then 341 = = =
\/1_kx2 1 1/1_:5% 1 xQ
1 — ka2
x
V1—(k+1)z2
x
So, byMath Induction we proved that xy = ——— for any k € N and,
Y b VTR Y
therefore, g (z) =z, = B —
’ " V1= na?

us
COtt\/g_l_COttCOtG_lzcot( )

T
b) Note that f (cott) = = t+ —
cott + /3 cott—i—cot%

6

for any t € R.
-1 ™ km

Let @q :=cot™" (z) and ¢, = ¢,_; + g,kz € N then ¢, = ¢, + ?,k eN.
We will prove by Math Induction that x = cot ¢, k € NU {0}.
Base of Math Induction.
We have by definition o = = = cot ¢,.
Step of Math Induction.
For any k € NU {0} supposition z = cot ¢, yeilds

Tri1 = f(xr) = f(cot gp,) = cot .

nw nw
cotgoocot?—l xcot?—l

nm
Thus, g () = z, = cot p,, = cot (<,00 + 7) = T = T
6 cot<p0+cot? m+cot?

Problem 10.16(62-Met. Rec.).
4T 42 2w 421w
and F (z)+ F(l—z)=1.

Note that since F () then

1—x
2z + 21—$
n k n
Let S, := ZF().ThenSn: ZF(
k=0 n k=0

n k n n—=k
25, = Fl—-|)+ ( ) =
kX::O (n) kz::O n
n 1
> (F(:z)—l-F(l—z)):n—i—l.Hence, Sn:n;— and

F(l—2x)=

n—=k

) and, therefore,
n

k=0
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n k n+1l 1 3n+1
Fl=-)=5,-F(0)= - - = .
kZ::I <”> ) 2 3 6

Problem 10.17(63-Met. Rec.).

Let ¢1 < g2 and x; := f (¢;),¢ = 1,2. Then, since xf’ +pr;—q; =0,0=1,2
we obtain x% + pro — q2 — (x? + pxr1 — q1) =0
a3 —a}+p(re—71) =2 —q =

q2 — q1
x5+ xomy + 22 +p’
Hence, 22 — 21 > 0 because ¢ — ¢1 > 0 and 23 + xom1 + 22 +p>p >0
for any x1,z2 and, therefore, f(q2) > f(q1).

(w2 — 1) (23 + 22wy + 23 +p) = —q1 <= Bp—11 =

Problem 10.18(64-Met. Rec.).

Assume that there is @ € R such that P (P (a)) = a then
)

P(P(a))—P(a)=—(P(a)—a).
)
)

P(P(a))—P(a)=—(P(a)—a) <= P(b)—b=—(P(a) —a) <
f(b) =—f(a) then f(a) f(b) <0 and f(z) as continuous function has
a root M located between @ and b,that is f (¢) =0 < P(c) =c.
Obtained contradiction mean that equation P (P (z)) = = have no
roots as well.

Problem 10.19(67-Met. Rec.).

According to the statement of the problem we have two sequences of numbers
ai, az, ...,a, (boys) and by, b, ..., b, (girls)
for which one of the two conditions holds:
a) a; <b,i=1,2...,norb) |a;—b|<h,i=12..n.
(in the problem h = 10)

1. Since conditions a) and b) connect in pairs only terms of both sequences,
that standing on the places with the same numbers, then the fulfillment of these
conditions does not depend on the order of order listing of these pairs.

Therefore, without loss of generality, we may assume that the members of
one of the two sequences, let it be by, ba, ..., b, is originally ordered as b; < by <
... < b, and then should be ordered only the sequence aq, as, ..., Gy,.

Since the ordering of any sequence of numbers is reduced to the imple-
mentation of ordering transpositions, that is two terms of the sequence a; and
a;,% < j exchanged their positions if a; > aj, it is suffices to prove the invariance
of fulfilling of the properties a) and b) when the corresponding transposition
is made. That is, to prove the validity of the proposed claims in the case of
n = 2 for pairs (a1, a2) and (by,be) in the supposition that b; < bs.

Suppose that a; > as. In the case of a) we have a1 < by,a2 < by and
b1 < bs.
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After transposition we obtain pair (ag,a;). Then as < a1 < by < by yields
as < by and a; < bo;
In the case of b ) we have |a; — b1| < h,|ag — b2| < h and a3 > as.
We will prove |ag — b1| < h, |ay — ba| < h.
Indeed, since |a; —b1| <h < by —h <a; <b; +h and
|a2—b2|§h <— by—h<ay<by+h

<
then { alb_ilb+h = a1 < by +h and
1 < 02

bg—hﬁﬂq
{ as < = by —h<a.

Hence, |a1 — bo| < h.

.. a1 <by+h
Similarly, { g < a1 = a2 < b; +h and
bg —h S a9

by < by = b — h<a.

Hence, |ag — by| < h.

Problem 10.20 (86-Met. Rec).
Solutionl.
Denoting u := x — b,v := y — b we set free parameter b and obtain system
of inequalities that equivalent to original system, namely the system
1) u~+ b > v? — uw>v2—b
v+b>u? v>u—b
Let (u,v) be only sollution of the system (1).
Then u+v>v2 —b+u?—b <

%4 L 12+ 12>0:>b> 1
2= \" "3 'T3) = =Ty

Ifo> ~1 then system (1) have at least two solutions.

Indeed, in that case equation b = 22 — z <= 22 — 2z — b =0 have

1—-+v1+4b 14++v1+4b

two roots zy = ———— and 29 =

and, therefore, (u,v) = (21, 21), (22, 22) are two different solution
of the system (1).

1
Thus, can’t be b > —— and remains b = —— as necessary condition
for b to provide only solution of the system (1).
And, vise versa, if b = —= then
uol/azon A 12f0<:>( )= (53
v—1/4>u? Y7o "T3) T U =\909
and it is only solution of the system.
Solution2. (Direct solution of original problem).

Let b be such that original system has only solution (z,y) .
Note that = y because if z # y then due symmetry of the system
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pair (y,z) which not equal to (x,y) is solution as well and that
contradicts to uniqueness of solution (z,y) .
But if x = y then system of two inequalities becomes one inequality

x> (z—b)° <= 22— 20+ 1)z +b2<0
and this inequality has unique solution. That possible only iff
discriminant of equation 2 — (2b+ 1) + b = 0 equal to zero, that is iff

1
(2b+1)° — 42 = 0 b=-7

1
Now, let b = ~1 then

(y i)QJr <:c i) <0 <= (z,y)=(1/4,1/4).
Remark.

Note that {

u+b> 2 {b2v2—u
<

v+b>u? b>u2—w
b> max{u2 — v, 0% — u} and b= —1/4
which provide uniquenebs of solution at the same time is
min (max {u — v, —u})
u,veER

2 2 2 2
Indeed, max {u2 —v, 0% — u} w-—v ;_ vvou (u “) ‘2|' (U U) _
(u—1/2*+ (v—1/2) — 1/2 N

> —1/4 and since lower bound for

v

2
max {u® — v,v? — u} is attanable if (u,v) = (1/2,1/2) then
min (max {u? —v,v? —u}) = -1/4.
u,vER

*Problem 10.21( CRUX 3090)
Suppose x = min {x,y, 2z}, then
3—dy<3—dr = 20(3—4x)>22(3—4y) > 22 +1>22+1.

So,2z(3—4dz)>2?+1 & 922 —62+1<0 < z=

CO\)—!'
oo\»—A ~

1
and because ¢ = min {z,y, z} that implies y > 3 and z >
From other side

INA
Nl
L =

1 4
=- = 1<=-(3—-4y) —
=3 22+ 3( ) ( 3>
i |

oo\H

1
So, z = 3" The same way gives us y =

*Problem 10.22(87-Met. Rec).
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Let x; be number of 2—rings chains created from rings taken by one from
rods staing in the points A; and A4;11,i=1,2,3,4 (A5 = Ay).
Then we should maximaze sum 1 + 3 + T3 + X4
by all quads (z1, 22,23, x4) of nonnegative integer numbers such that
1+ 14 <ay, w1 +x2 < az,x2+ 3 < ag,r3+ x4 < ag.
Set of all such quads (x1,x2,z3,z4) we denote D.

So, we have to determine max (x1 + 22 + 23+ 24) .
(z1,x2,23,24)ED

Let t :== x4 then 0 < ¢ < min{ay,a4} and
Dy :={(z1,22,23) | 2; > 0,i=1,2,3, 21 < a1 —t,x1 + 22 < as,x2 + 23 < a3, x3 < ag — t}.
Thus, max (1 + 22+ 23 +24) = max (t + max (1 + 22+ $3)> )
(z1,72,23,24)ED 0<t<min{ai,as} (z1,22,23)EDy
Lemma.
Let z1 < by,x1 + 29 < by, w9 + 23 < b3, x3 < by, z; > 0,7 =1,2,3 where
bi, 1 =1,2,3 are given nonnegative integer numbers.
Then maximal possible value of x1 + z2 4+ x3 equal
min {b1 + b3, ba + b3, bs + b4} .
Proof.
0<z <ty

z1 < by
0< 2y <by—1z )
1+ 22 < by 0< 23 < bs — 29 0 < xz1 < min {by, by}

‘We have To+a3<by <+— < b — 0 < zg < min{by — x1,b3} .
3 < by o 0 < 3 < min {bg — x2,bs}

z1 < bo
0§.’L’1,x27w3 §C2<b3

Then a1 + 22 + 23 < @1 + 22 + min {by — 29, b4} = 1 + min {bs, x5 + by} <

z1 +min {b3, min {bg — 1, bg} + b4} = x1 + min {bg, ba —x1 + by, b3 + b4} =

T1+min {bg, by + by — 31‘1} = min {b3 + x1,bs + b4} < min {bg + min {bl, bg} ,bo + b4} =
min {by + bs, ba + b3, b2 + bs} . Let 27 := min {by1, b2} , 23 := min {by — 7,3},

x% = min{bs — x5,b4}.

Then x; + z2 + 23 < 27 + x5 + % = min {by + b3, ba + b3, bz + bs} and,

therefore, max (z1 + x2 + x3) = min {by + b3, by + b3, ba + by} .

By replacing (b1, b2, b3,bs) in Lemma with (a; — t, a2, a3, aq —t) we obtain

that

max (1 + 22 + x3) = min{a; — t + a3, a2 + a3, a2 + a4 — t}
(z1,22,23)€EDy

and, therefore,

max (x1 + 22+ 23+ 4) = max (t+ min{a; —t+ as, a2 + as,as + a4 — t}) =
(z1,z2,23,24)ED 0<t<min{a1,a4}
max (min {a; + a3, a2 + a3 +t,a2 + as}) = min{a; + az, a2 + a3 +min{a, a4}, a2 +as} =

0<t<min{ai,a4}
min {a; + as,as + as + a1,as + ag + ag,a2 + a4} = min{as + as,as +aq}.

Problem 10.23(Problem with light bulbs).

States of bulbs is encoded by two numbers —1 if bulb is turned on and 1
if it turned off.

For any integer number m let D (m) be set of all natural divisors of m.
Let a,, (k), m =1,2,...,n be state of the m — th bulb when the person
click k — th switch.
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Note that a, (1) =1 for all m € {1,2,...n} and
am (k) :{ fzn(? B i)lff’“kiDD(( )) ke (2,3, n},me (1,2, .0}
Since ay, (n) = (—l)lD(m) ,m € {1,2,...n} then a,, (n) is turned on
iff |D (m)] is odd number.
If at least one of exponent in expansion m = p{*...p;" is odd
then |D (m)| is even.
Thus, |D (m)| is odd iff all expoents are even, that is iff m is a perfect square
and, therefore, we have so many turned on bulbs as haw many perfect
squares between 1 and n.
Since 1 < k? <n <= 1<k <[/n] answer is:
[v/n] bulbs finally will be turned on.

Problem 10.24(0274, MR4 2013 ).

b (ac — x)
< <y<|—=
Wehave{ bz;ray>_0abc <— O_Q_{ a J —
v =0 0<z<aec.
0<t<ac
r=ac—t
0<y<{wJ.

=ac+1+ Z {btJ Since {0,1,2,...,ac} =

bt
Hence, D := {ac—ty |0<t<acand 0 <y < |— and
a
LA
a
r 0,1 c—landr—0,1,2 ., a—1} then
2

=5 (| J

{ac} U {ka +

£12] - S5 ] 5 (e 2] -
bc+C§“§:bk+ Z:LLJ—bc—&—abzk_i_ZOZ{J
bc+]z‘?’(22_1)c+_coar—1 er. =0 k=0

b
Since a L b then {a{;} | r=1,2,..,a— 1} ={1,2,..,a—1} then

a=l (b azly -1

r§1 {a} = Tgl =3 and, therefore,

a—l _b(a—l) a—1_ (a—1)(b—1)
E:: { J 2 2 2 '
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1 D (h—1
Thus, |D|:ac+1+bc+ab(c2 )C+C(a ) (b ):

2
c(2a+2b+abc—ab+ab—a—b+1) clabc+a+b+1)
+1=

2 2

Problem 10.25(102-Met. Rec.)

a) Suppose that sinz + sin ax is periodic with the period 7.

Then sin (z + 7) + sina (x + 7) = sinz + sinar <=

sin(x 4+ 7) —sinz = — (sina (z + 7) — sin ax) .

Let h(z):=sin(x 4+ 7) —sinz = — (sina (z + 7) — sin ax) .

Then h (x) is periodic with period 7.But at the same time h(x) have

2
periods 27 and il

o
Note that 7 ¢ 20Z\ {0} because otherwise if 7 € 27Z\ {0} then
sina (z + 7) —sinax = 0 for any « and in paricular if = 0.

+ 1.

) km .
Then sinar =0 <= ar =kr = a = — € Q —contradiction.

-
Since continuos function h () isn’t constant then it has smallest

.. . 2w .
positive period 7,.Then 27 = k7, and — = [7, for some integer
e

k,l and, therefore, o = ? e Q.

Contradiction!
Another solution.
Let h(x) := sinz + sinaz, then A’ (z) = cosx + acosax and h" (z) =
—sinz — o? sin ax
Assume that h (z) is periodic with period 7.
Then A/ (x) and h” (z) are periodic with period 7.

2
Since h (z) + A" (z) = (1 — &?) sin ax and sin oz has main period il
a

2
then 7 = —“m because A’ () + A" () has period 7.
a
Similarly, since o®h (z) + h” (z) = (a? — 1) sinz we obtain
2
7 = 2nm.Hence, —Wm =2nm = a= m € Q,that is contradiction.
n

b) Solution simiﬁr to a)

c) Let h(z) :=tanz + tan ax where « ¢ Q.

Then A’ (z) =1+ tan?z + o (1 + tan® ax) = 1+ a + tan® z + a tan? az,
tanT + tanar = 0,tan? 7 + atan® ar = 0,

tanT (1 + tan? ’7') +2a% tan at (1 + tan? 047') =0.

Since tan ar = —tan 7 then tan® 7 + atan? ar = tan?7 (1 + o) = 0 <=
T=nm,n € Zand tanaT =0 < ar =mnm,m € Z.

Hence, a = m € Q and that is contradiction.

More simpine.

Since cot x + cot ax isn’t periodic ( because D (cot z 4 cot ax) =

D (cotxz) N D (cot ax) =R\ 7ZN R\gZ is nonperiodic) then

tanz + tan ax = cot (7/2x — x) + cot (7/2z — ax)
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is nonperiodic as well.

d) Let h(z) := sinz + tan ax where a ¢ Q. Suppose that h (x) periodic
with period 7 > 0.

Since h (x) is differentiable then

W (z) = cosz + o (1 + tan? azx) , " (x) = —sinz + 2a? tan az (1 + tan® ax)
are periodic with period 7 as well. Since h (1) = h(0),h' (1) =1’ (0),

R (1) = h” (0) then 7 satisfy to the system.

Hence
sin7T + tanar =0 sinT +tanaT =0
COST+a(1+tan2aT)=1+a < cosT +atan?ar =1
—sinT 4 2a? tan ar (1 + tan? om') =0 —sinT 4 2a® tanar (1 + tan? aT) =0

Then sin 7+tan ar+(—sin7)+20? tan ar (1 + tan? a7) =0 <= tanar (14 20? (1 +tan’ a7)) =
0

tanar = 0 <= ar = nm,n € Z and, therefore, sinT = 0 < 7 =
mm,m € Z

Hence, nm = mra < o = — € Q and that is contradiction.
m

Problem 10.26(103-Met.Rec)

1
a1 +1 +a2+1 +m+an+l'
1 1 1
Since = 21, + 22 then from = = — — =
kel k k Th41 Tk (1 + xk) Tk T+ 1
1 1 1 1
S A L follows that Tk o~ _ .
rr  xp(zp+1)  xp . $k+11 Thyl Tk Thel
Thus, we obtain S,, = — — .
T Tn+1

Denote S,, =

Or more shortly:
Dividing an4+1 = an + ai by ana,+1 we obtain
1

— - = I _ and from that immediately follows
Qnp Ap41 Ap41 an + 1

n 1 1 1 1 1
S Y E S S T
k=1 \ Ok ag+1 a Ap+1 An+1
So, S, < 2 for any n € N From the other hand, since a,, increasing
in N ( this follows from a1 — a, = a2 > 0,n € N ) then

3 9 21
>a3=-+-—=—>1foralln>3.
an > as 4+16116> olra n>3
Hence, S, =2 — >2— — >1forany n > 2.
An+1 as
Thus for alln >3 holds 1 < S, <2 < [S,] =1.
. . 3 1 1 2 4 26
(Or, alternatively, since as = — then So = ——4+——F% =-4+-=—>1
4 1 3 3 7 21
1+§ 1+Z

and 1 < S5 <8, <2 for any n > 2).

Problem 10.27 (Austria — Poland, 1980).
Since |aptm — an — am| <1 <= apn+am —1 < anem < an +ap + 1 then
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in particularly
2a,—1 < a9y < 2a,+1, 3a,—2 < 2ap+a,—1 < aop < aspt+a,+1 < 3a,+2
and further, using math induction we obtain

ma, — (m—1) < amp <may, + (m—1).

a m—-—1 _a a m—1 a a m—1
Hence — — <Ry @‘mn_lg
n mn mn n mn mn n mn
and since ] 1
m — Qmn  Qp
< — then ‘ - < —.
mn n n n
. . a"rnn a’”i 1
Switching places for n and m we get also |— — —| < —
m
Hereof, | — - —|=|— — — + -— | < |— |+
m n mn  mn m mn n
a'f"/fl am
- 2l< =+ =
mn m n_m

Problem 10.28(M.1195 ZK Proposed by ,Proposed by O.T.Izhboldin)

From
(1) an+am— !
any n € N holds inequalities

follows that for

1
<a <ap+amy+
n+m n m n—+m

1
ap+a1 ———<a <— a1 ——<a — a, and
n 1 TL+1_ n+1 1 n+1_ n+1 n

1
an+1§an+ﬂl+m — an+1fan§a1+n7+1
which implies

n+m—1 n+m—1 1
Ungm — Am = », (Ggy1—ar) > Y <a1 — > =

k=m k=m
n

(2) nay + am — Y.

m S Apn+m and
k=1

k=m

n+m—1 n
Uptm — Qm <Y <a1+):na1+zm —

(3)  anim <naita 1P 2y

From (3) and right inequality of (1) we obtain
1

n ]_
<a <nai + ay, + E—
n4+m — = ! mn mom+k

n—1 1

G, + A, —

Ap — Nap <
" 1_m—i—n —mim+k

and from (2) and left inequality of (1) we obtain
" 1

nai + QG — —<a <an-+a,+— —
1 m k§1m+k_ n+m > Un m n+m

n—1 1 2
— - < a, —naj.
(& s ) <
n—1

+ 2

m+n =y m+k

Thus, |a, —nai| < for any n,m € N and since
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2 n=l 1
an—na1|§lim( + > )zO

n—oco \m-+mn =im+k
we finally obtain that a,, — na; = 0.

*Problem 10.28 (MRJ259)
Let z1, s, ..., x, be arbitrary increasing arithmetic progression x1, xo, ..., T,
such that 23 + 23 + ...+ 22 = 1.
Since z, = x1 + (k—1)d,k =1,2,...,n then 27 + 23 + ... + 22 = 1 +—
24 +d)’+ (@ +2d)° + .+ (@1 +(n—1)d)? =1 =
nzi+2r1d(1+2+3+...+n—1)+d? (12+22+...+(n— 1)2) =1 <
(n—1)n(2n—1)
6

nz? +x1d (n — 1)n + d? =1 <=

L -1)(2n—1
x%—l—xld(n—l):a_d?%
1

(xl+d(n—1)>21d2(n— )2n—1)  dn-1)° _

= TL(T—].) < m (since d> O)

Thus, we obtain upper bound for common difference d.

Letd=d, = 27\/§

n(n?—1)

n—=1)n(2n—1)
6

then quadratic equation

=1 <<

nz? + x1d. (n — 1) n + d?

<x1+d*(nZ_1)>2:O

die (n—1 -1
have only solution 1 = —L =-2V3 e

2 n(n+1)
n-l Qﬁ(k_l) 1,2,...,n

n(n+1)+\/n(n2—1)’k: o

satisfy 2% + 23 + ... + 22 = 1 and maximize common difference d,

Y
Vn(n? =1)

Problem 10.29.(Quickies-Q2(CRUX?))

Let by := | (15 +v220)" + (15 + v320)""" | = | (16 + v/220) (15 + v/220)" | and
a, = (16 +/220) (15 + v/220)" + (16 — v/220) (15 — v/220)".

Then ag = 32,a; = 920 and a,, satisfy to the recurrence
(1) ant1 — 30a, +5a,—1 =0,n € N .

Since 1 > (16 — v/220) (15 — v/220) > (16 — v/220) (15 — v/220)" > 0

So, arithmetic progression zj = —2v/3

i.e. maxd =
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and a,, is integer for n € N and

(16 + v/220) (15 + v220)" = a, — 1+ 1 — (16 — v/220) (15 — v/220)"
we obtain b,, = a,, — 1.. By substitution a,, = b,, + 1 in the recurrence
(1) we obtain recurrence for b, :

(2) bn+1 — 30b, + 5b,,_1 = 24, n € N and b; = 31, b1 = 919.
Let r,, = b, (mod 10) then for r,, we have recurrence

(3) Tna1 —drp_1 =4 and rg =11 = —1.
Since 11 = —1 and rogy1 = Srox—1 + 4,k € N we obtain 7951 = —1 for
all k € N;
Since ro = 9 and rogy2 = 5rap + 4,k € N we obtain ro;, = 9 (mod 10) for
all k € N.
So, b, =1, =9 (mod 10) for any n € N.
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